557 research outputs found
MiR-107 and MiR-185 Can Induce Cell Cycle Arrest in Human Non Small Cell Lung Cancer Cell Lines
Background: MicroRNAs (miRNAs) are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5' seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis. Methodology/Principal Findings: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6. Conclusions/Significance: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term 'cell cycle'. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.Full Tex
The systemic inflammatory response, performance status and survival in patients undergoing alpha-interferon treatment for advanced renal cancer
The effectiveness of psychosocial interventions for anxiety in children and adolescents with autism spectrum disorder:a systematic review and meta-analysis
Anxiety is a common problem in children and adolescents with autism spectrum disorder (ASD). This meta-analysis aimed to systematically evaluate the evidence for the use of psychosocial interventions to manage anxiety in this population. Cognitive behavioural therapy (CBT) was the primary intervention modality studied. A comprehensive systematic search and study selection process was conducted. Separate statistical analyses were carried out for clinician-, parent-, and self-reported outcome measures. Sensitivity analyses were conducted by removing any outlying studies and any studies that did not use a CBT intervention. A subgroup analysis was performed to compare individual and group delivery of treatment. Ten randomised control trials involving a total of 470 participants were included. The overall SMD was d = 1.05 (95 % CI 0.45, 1.65; z = 3.45, p = 0.0006) for clinician- reported outcome measures; d = 1.00 (95%CI 0.21, 1.80; z = 2.47, p = 0.01) for parent-reported outcome measures; and d = 0.65 (95%CI -0.10, 1.07; z = 1.63, p = 0.10) for self-reported outcome measures. Clinician- and parent-reported outcome measures showed that psychosocial interventions were superior to waitlist and treatment-as-usual control conditions at post-treatment. However, the results of self-reported outcome measures failed to reach significance. The sensitivity analyses did not significantly change these results and the subgroup analysis indicated that individual treatment was more effective than group treatment. The main limitations of this review were the small number of included studies as well as the clinical and methodological variability between studies
The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
Value of hospital antimicrobial stewardship programs [ASPs]:a systematic review
Abstract Background Hospital antimicrobial stewardship programs (ASPs) aim to promote judicious use of antimicrobials to combat antimicrobial resistance. For ASPs to be developed, adopted, and implemented, an economic value assessment is essential. Few studies demonstrate the cost-effectiveness of ASPs. This systematic review aimed to evaluate the economic and clinical impact of ASPs. Methods An update to the Dik et al. systematic review (2000–2014) was conducted on EMBASE and Medline using PRISMA guidelines. The updated search was limited to primary research studies in English (30 September 2014–31 December 2017) that evaluated patient and/or economic outcomes after implementation of hospital ASPs including length of stay (LOS), antimicrobial use, and total (including operational and implementation) costs. Results One hundred forty-six studies meeting inclusion criteria were included. The majority of these studies were conducted within the last 5 years in North America (49%), Europe (25%), and Asia (14%), with few studies conducted in Africa (3%), South America (3%), and Australia (3%). Most studies were conducted in hospitals with 500–1000 beds and evaluated LOS and change in antibiotic expenditure, the majority of which showed a decrease in LOS (85%) and antibiotic expenditure (92%). The mean cost-savings varied by hospital size and region after implementation of ASPs. Average cost savings in US studies were 2.50 to $2640), with similar trends exhibited in European studies. The key driver of cost savings was from reduction in LOS. Savings were higher among hospitals with comprehensive ASPs which included therapy review and antibiotic restrictions. Conclusions Our data indicates that hospital ASPs have significant value with beneficial clinical and economic impacts. More robust published data is required in terms of implementation, LOS, and overall costs so that decision-makers can make a stronger case for investing in ASPs, considering competing priorities. Such data on ASPs in lower- and middle-income countries is limited and requires urgent attention
The Concise Guide to PHARMACOLOGY 2015/16:Nuclear hormone receptors
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
Heterodimers of photoreceptor-specific nuclear receptor (PNR/NR2E3) and peroxisome proliferator-activated receptor (PPARγ) are disrupted by retinal disease-associated mutations
Photoreceptor-specific nuclear receptor (PNR/NR2E3) and Tailless homolog (TLX/NR2E1) are human orthologs of the NR2E group, a subgroup of phylogenetically related members of the Nuclear Receptor (NR) superfamily of transcription factors. We assessed the ability of these NRs to form heterodimers with other members of the human NRs representing all major subgroups. The TLX ligand binding domain (LBD) did not appear to form homodimers or interact directly with any other NR tested. The PNR LBD was able to form homodimers, but also exhibited robust interactions with the LBDs of PPARγ/NR1C3 and TRβ/NR1A2. The binding of PNR to PPARγ was specific for this paralog, as no interaction was observed with the LBDs of PPARαNR1C1 or PPARδNR1C2. In support of these findings, PPARγ and PNR were found to be co-expressed in human retinal tissue extracts and could be co-immunoprecipitated as a native complex. Selected sequence variants in the PNR LBD associated with human retinopathies, or a mutation in the dimerization region of PPARγ LBD associated with familial partial lipodystrophy type 3, were found to disrupt PNR/PPARγ complex formation. Wild type PNR, but not a PNR309G mutant, was able to repress PPARγ-mediated transcription in reporter assays. In summary our results reveal novel heterodimer interactions in the NR superfamily, suggesting previously unknown functional interactions of PNR with PPARγ and TRβ that have potential importance in retinal development and disease
Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al
The Concise Guide to PHARMACOLOGY 2015/16:Enzymes
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13354/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
The Concise Guide to PHARMACOLOGY 2015/16:Transporters
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13355/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
- …
