99 research outputs found
Usefulness and acceptability of a standardised orientation and mobility training for partially-sighted older adults using an identification cane
<p>Abstract</p> <p>Background</p> <p>Orientation and mobility (O&M) training in using an identification (ID) cane is provided to partially-sighted older adults to facilitate independent functioning and participation in the community. Recently, a protocolised standardised O&M-training in the use of the ID cane was developed in The Netherlands. The purpose of this study is to assess the usefulness and acceptability of both the standardised training and the regular training for participants and O&M-trainers in a randomised controlled trial (NCT00946062).</p> <p>Methods</p> <p>The standardised O&M-training consists of two structured face-to-face sessions and one telephone follow-up, in which, in addition to the regular training, self-management and behavioural change techniques are applied. Questionnaires and interviews were used to collect data on the training’s usefulness, e.g. the population reached, self-reported benefits or achievements, and acceptability, e.g. the performance of the intervention according to protocol and participants’ exposure to and engagement in the training.</p> <p>Results</p> <p>Data was collected from 29 O&M-trainers and 68 participants. Regarding the self-reported benefits, outcomes were comparable for the standardised training and the regular training according the trainers and participants e.g., about 85% of the participants in both groups experienced benefits of the cane and about 70% gained confidence in their capabilities. Participants were actively involved in the standardised training. Nearly 40% of the participants in the standardised training group was not exposed to the training according to protocol regarding the number of sessions scheduled and several intervention elements, such as action planning and contracting.</p> <p>Conclusions</p> <p>The standardised and regular O&M-training showed to be useful and mostly acceptable for the partially-sighted older adults and trainers. Yet, a concern is the deviation from the protocol of the standardised O&M-training by the O&M-trainers regarding distinguishing elements such as action planning. Overall, participants appreciated both trainings and reported benefit.</p
An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics
Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Neuronal intranuclear inclusion disease is genetically heterogeneous
Neuronal intranuclear inclusion disease (NIID) is a clinically heterogeneous neurodegenerative condition characterized by pathological intranuclear eosinophilic inclusions. A CGG repeat expansion in NOTCH2NLC was recently identified to be associated with NIID in patients of Japanese descent. We screened pathologically confirmed European NIID, cases of neurodegenerative disease with intranuclear inclusions and applied in silico-based screening using whole-genome sequencing data from 20 536 participants in the 100 000 Genomes Project. We identified a single European case harbouring the pathogenic repeat expansion with a distinct haplotype structure. Thus, we propose new diagnostic criteria as European NIID represents a distinct disease entity from East Asian cases
Toxicity Overrides Morphology on Cylindrospermopsis raciborskii Grazing Resistance to the Calanoid Copepod Eudiaptomus gracilis
Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters
“Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface
Towards a Framework for Understanding Fairtrade Purchase Intention in the Mainstream Environment of Supermarkets
© 2014, Springer Science+Business Media Dordrecht. Despite growing interest in ethical consumer behaviour research, ambiguity remains regarding what motivates consumers to purchase ethical products. While researchers largely attribute the growth of ethical consumerism to an increase in ethical consumer concerns and motivations, widened distribution (mainstreaming) of ethical products, such as fairtrade, questions these assumptions. A model that integrates both individual and societal values into the theory of planned behaviour is presented and empirically tested to challenge the assumption that ethical consumption is driven by ethical considerations alone. Using data sourced from fairtrade shoppers across the UK, structural equation modelling suggests that fairtrade purchase intention is driven by both societal and self-interest values. This dual value pathway helps address conceptual limitations inherent in the underlying assumptions of existing ethical purchasing behaviour m odels and helps advance understanding of consumers’ motivation to purchase ethical products
Initial impacts of Microcystis aeruginosa blooms on the aquatic food web in the San Francisco Estuary
Human and mouse essentiality screens as a resource for disease gene discovery.
The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery
- …
