32 research outputs found

    Data from: Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants

    No full text
    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species

    Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants

    No full text
    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species

    Cerebellar Bottom-of-Fissure Dysplasia—a Novel Cerebellar Gray Matter Neuroimaging Pattern

    No full text
    We report on seven patients with a novel neuroimaging finding that involves exclusively the cerebellar gray matter at the bottom of several fissures of both hemispheres but spares the vermis. The abnormal fissures were predominantly located in the lower and lateral parts of the cerebellar hemispheres. The affected cerebellar cortex was hypointense on T1-weighted and hyperintense on T2-weighted and fluid attenuation inversion recovery sequences. In some patients, the involved cerebellar gray matter was mildly thickened and the affected fissures slightly widened. In three of seven patients, the neuroimaging findings were unchanged on follow-up studies up to 6 years. The seven patients had various indications for the brain magnetic resonance imaging studies, and none of them had cerebellar dysfunction. Based on the similarity of the neuroimaging pattern with the cerebral "bottom-of-sulcus dysplasia," we coined the term "cerebellar bottom-of-fissure dysplasia" to refer to this novel neuroimaging finding. The neuroimaging characteristic as well as the unchanged findings on follow-up favors a stable "developmental" (malformative) nature. The lack of cerebellar dysfunction in the affected patients suggests that cerebellar bottom-of-fissure dysplasia represents most likely an incidental finding that does not require specific diagnostic investigation but allows a reassuring attitude
    corecore