240 research outputs found
Organization and repair of the trigeminal system in the lamprey using fluorescent double labeling [abstract]
Abstract only availableFaculty Mentor: Andrew McClellan, Biological ScienceIn the CNS, many sensory and motor systems are topologically organized relative to various body structures. For example, in humans, sensory inputs from the lower, middle, and upper parts of the body are received by the anterior, middle, and posterior somatosensory cortex, respectively. Following injury in the CNS of higher vertebrates, such as birds and mammals, there is very little regeneration and recovery of function. In contrast, in lower vertebrates, including lamprey, fish, and certain amphibians, substantial axonal regeneration occurs following CNS injuries, and there is virtually complete recovery of functions. However, it is not known whether axonal regeneration restores the topological organization that may have existed prior to injury. The trigeminal system is responsible for transmitting sensory and motor information from the head via axons in the trigeminal cranial nerve. In the lamprey following injury of the trigeminal nerve, sensory and motor axons regenerate. The purpose of the present study was to determine whether the trigeminal system of normal lamprey is topologically organized and whether regeneration of axons in injured trigeminal nerve restores this organization. In normal larval lamprey, Alexa 488 dextran amine (Alexa) and Texas red dextran amine (TRDA), two different anatomical fluorescent tracers, were applied to the medial and lateral parts of the head, respectively. This resulted in clear labeling of the medial and lateral parts of the trigeminal system in the brain with Alexa and TRDA, respectively. Thus, in normal lamprey, the trigeminal system appears to be topologically organized. If following injury of the trigeminal nerve, axonal regeneration restores this topological organization, this will indicate that regeneration in the lamprey is relatively precise and possibly controlled by specific guidance factors. Identification of these guidance factors would greatly improve our understanding of the mechanisms that regulate axonal regeneration following CNS injury in vertebrate animals, including humans.
Associations between Organochlorine Contaminant Concentrations and Clinical Health Parameters in Loggerhead Sea Turtles from North Carolina, USA
Widespread and persistent organochlorine (OC) contaminants, such as polychlorinated biphenyls (PCBs) and pesticides, are known to have broad-ranging toxicities in wildlife. In this study we investigated, for the first time, their possible health effects on loggerhead sea turtles (Caretta caretta). Nonlethal fat biopsies and blood samples were collected from live turtles for OC contaminant analysis, and concentrations were compared with clinical health assessment data, including hematology, plasma chemistry, and body condition. Concentrations of total PCBs (∑PCBs), ∑DDTs, ∑chlordanes, dieldrin, and mirex were determined in 44 fat biopsies and 48 blood samples. Blood concentrations of ∑chlordanes were negatively correlated with red blood cell counts, hemoglobin, and hematocrit, indicative of anemia. Positive correlations were observed between most classes of OC contaminants and white blood cell counts and between mirex and ∑TCDD-like PCB concentrations and the heterophil:lymphocyte ratio, suggesting modulation of the immune system. All classes of OCs in the blood except dieldrin were correlated positively with aspartate aminotransferase (AST) activity, indicating possible hepatocellular damage. Mirex and ∑TCDD-like PCB blood concentrations were negatively correlated with alkaline phosphatase (ALP) activity. Significant correlations to levels of certain OC contaminant classes also suggested possible alteration of protein (↑blood urea nitrogen, ↓albumin:globulin ratio), carbohydrate (↓glucose), and ion (↑sodium, ↓magnesium) regulation. These correlations suggest that OC contaminants may be affecting the health of loggerhead sea turtles even though sea turtles accumulate lower concentrations of OCs compared with other wildlife
SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
Identifying quality improvement intervention publications - A comparison of electronic search strategies
Abstract Background The evidence base for quality improvement (QI) interventions is expanding rapidly. The diversity of the initiatives and the inconsistency in labeling these as QI interventions makes it challenging for researchers, policymakers, and QI practitioners to access the literature systematically and to identify relevant publications. Methods We evaluated search strategies developed for MEDLINE (Ovid) and PubMed based on free text words, Medical subject headings (MeSH), QI intervention components, continuous quality improvement (CQI) methods, and combinations of the strategies. Three sets of pertinent QI intervention publications were used for validation. Two independent expert reviewers screened publications for relevance. We compared the yield, recall rate, and precision of the search strategies for the identification of QI publications and for a subset of empirical studies on effects of QI interventions. Results The search yields ranged from 2,221 to 216,167 publications. Mean recall rates for reference publications ranged from 5% to 53% for strategies with yields of 50,000 publications or fewer. The 'best case' strategy, a simple text word search with high face validity ('quality' AND 'improv*' AND 'intervention*') identified 44%, 24%, and 62% of influential intervention articles selected by Agency for Healthcare Research and Quality (AHRQ) experts, a set of exemplar articles provided by members of the Standards for Quality Improvement Reporting Excellence (SQUIRE) group, and a sample from the Cochrane Effective Practice and Organization of Care Group (EPOC) register of studies, respectively. We applied the search strategy to a PubMed search for articles published in 10 pertinent journals in a three-year period which retrieved 183 publications. Among these, 67% were deemed relevant to QI by at least one of two independent raters. Forty percent were classified as empirical studies reporting on a QI intervention. Conclusions The presented search terms and operating characteristics can be used to guide the identification of QI intervention publications. Even with extensive iterative development, we achieved only moderate recall rates of reference publications. Consensus development on QI reporting and initiatives to develop QI-relevant MeSH terms are urgently needed
Domain Altering SNPs in the Human Proteome and Their Impact on Signaling Pathways
Single nucleotide polymorphisms (SNPs) constitute an important mode of genetic variations observed in the human genome. A small fraction of SNPs, about four thousand out of the ten million, has been associated with genetic disorders and complex diseases. The present study focuses on SNPs that fall on protein domains, 3D structures that facilitate connectivity of proteins in cell signaling and metabolic pathways. We scanned the human proteome using the PROSITE web tool and identified proteins with SNP containing domains. We showed that SNPs that fall on protein domains are highly statistically enriched among SNPs linked to hereditary disorders and complex diseases. Proteins whose domains are dramatically altered by the presence of an SNP are even more likely to be present among proteins linked to hereditary disorders. Proteins with domain-altering SNPs comprise highly connected nodes in cellular pathways such as the focal adhesion, the axon guidance pathway and the autoimmune disease pathways. Statistical enrichment of domain/motif signatures in interacting protein pairs indicates extensive loss of connectivity of cell signaling pathways due to domain-altering SNPs, potentially leading to hereditary disorders
Gene-carbohydrate and gene-fiber interactions and type 2 diabetes in diverse populations from the National Health and Nutrition Examination Surveys (NHANES) as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study
Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer
Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine “hot spots” involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a “conformational selection model” of the Hsp90 mechanism, whereby the protein may exist in a dynamic equilibrium between different conformational states available on the energy landscape and binding of a specific partner can bias the equilibrium toward functionally relevant complexes
Diabetic Impairment of C-Kit+ Bone Marrow Stem Cells Involves the Disorders of Inflammatory Factors, Cell Adhesion and Extracellular Matrix Molecules
Bone marrow stem cells from diabetes mellitus patients exhibit functional impairment, but the relative molecular mechanisms responsible for this impairment are poorly understood. We investigated the mechanisms responsible for diabetes-related functional impairment of bone marrow stem cells by extensively screening the expression levels of inflammatory factors, cell cycle regulating molecules, extracellular matrix molecules and adhesion molecules. Bone marrow cells were collected from type 2 diabetic (db/db) and healthy control (db/m+) mice, and c-kit+ stem cells were purified (purity>85%) for experiments. Compared with the healthy control mice, diabetic mice had significantly fewer c-kit+ stem cells, and these cells had a lower potency of endothelial differentiation; however, the production of the angiogenic growth factor VEGF did not differ between groups. A pathway-focused array showed that the c-kit+ stem cells from diabetic mice had up-regulated expression levels of many inflammatory factors, including Tlr4, Cxcl9, Il9, Tgfb1, Il4, and Tnfsf5, but no obvious change in the expression levels of cell cycle molecules. Interestingly, diabetes-related alterations of the extracellular matrix and adhesion molecules were varied; Pecam, Mmp10, Lamc1, Itgb7, Mmp9, and Timp4 were up-regulated, but Col11a1, Fn1, Admts2, and Itgav were down-regulated. Some of these changes were also confirmed at the protein level by flow cytometry analysis. In conclusion, c-kit+ bone marrow stem cells from diabetic mice exhibited an extensive enhancement of inflammatory factors and disorders of the extracellular matrix and adhesion molecules. Further intervention studies are required to determine the precise role of each molecule in the diabetes-related functional impairment of c-kit+ bone marrow stem cells
- …
