8 research outputs found

    Cardiovascular Response to Beta-Adrenergic Blockade or Activation in 23 Inbred Mouse Strains

    Get PDF
    We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the β-adrenergic receptor blocker atenolol or under a low and a high dose of the β-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H2>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to β-stimulation and β-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains

    Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins

    No full text

    Stereochemistry of Bistricyclic Aromatic Enes and Related Polycyclic Systems

    No full text
    Bistricyclic aromatic enes (BAEs) and related polycyclic systems are a class of molecular materials that display a rich variety of conformations, dynamic stereochemistry and switchable chirality, color, and spectroscopic properties. This is due to the a subtle interplay of the inherent preference for planarity of aromatic systems and the competing necessity of non-planarity due to intramolecular overcrowding in the fjord regions built into the general molecular structure of BAEs. The conformational, dynamic, and spectroscopic properties may be designed and fine-tuned, e.g., by variation of the bridging groups X and Y, the overcrowding in the fjord regions, extensions of the aromatic system, or other modifications of the general BAE structure, based on the fundamental understanding of the structure-property relationships (SPR). The present review provides an analysis of the conformational spaces and the dynamic stereochemistry of overcrowded bistricyclic aromatic enes applying fundamental symmetry considerations. The symmetry analysis presented here allows deeper insight into the conformations, chirality, and the mechanisms of the dynamic stereochemistry, and will be instrumental in future computational studies
    corecore