2,129 research outputs found
Phases of planar 5-dimensional supersymmetric Chern-Simons theory
In this paper we investigate the large- behavior of 5-dimensional
super Yang-Mills with a level Chern-Simons term and an
adjoint hypermultiplet. As in three-dimensional Chern-Simons theories, one must
choose an integration contour to completely define the theory. Using
localization, we reduce the path integral to a matrix model with a cubic action
and compute its free energy in various scenarios. In the limit of infinite
Yang-Mills coupling and for particular choices of the contours, we find that
the free-energy scales as for gauge groups with large values
of the Chern-Simons 't\,Hooft coupling, . If we also
set the hypermultiplet mass to zero, then this limit is a superconformal fixed
point and the behavior parallels other fixed points which have known
supergravity duals. We also demonstrate that gauge groups cannot have
this scaling for their free-energy. At finite Yang-Mills coupling we
establish the existence of a third order phase transition where the theory
crosses over from the Yang-Mills phase to the Chern-Simons phase. The phase
transition exists for any value of , although the details differ
between small and large values of . For pure Chern-Simons
theories we present evidence for a chain of phase transitions as
is increased.
We also find the expectation values for supersymmetric circular Wilson loops
in these various scenarios and show that the Chern-Simons term leads to
different physical properties for fundamental and anti-fundamental Wilson
loops. Different choices of the integration contours also lead to different
properties for the loops.Comment: 40 pages, 17 figures, Minor corrections, Published versio
Static Charges in the Low-Energy Theory of the S-Duality Twist
We continue the study of the low-energy limit of N=4 super Yang-Mills theory
compactified on a circle with S-duality and R-symmetry twists that preserve N=6
supersymmetry in 2+1D. We introduce external static supersymmetric quark and
anti-quark sources into the theory and calculate the Witten Index of the
resulting Hilbert space of ground states on a torus. Using these results we
compute the action of simple Wilson loops on the Hilbert space of ground states
without sources. In some cases we find disagreement between our results for the
Wilson loop eigenvalues and previous conjectures about a connection with
Chern-Simons theory.Comment: 73 pages, two paragraphs added, one to the introduction and one to
the discussio
D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades
We perform a systematic analysis of the D-brane charges associated with
string theory realizations of d=3 gauge theories, focusing on the examples of
the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric
U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction
of these theories and their dual string theory backgrounds in the supergravity
approximation. In the N=4 case we generalize the previously known gravitational
duals to arbitrary values of the gauge couplings, and present a precise mapping
between the gravity and field theory parameters. In the N=3 case, which (for
some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter
theory in the IR, we argue that the careful analysis of the charges leads to a
shift in the value of the B-field in the IR solution by 1/2, in units where its
periodicity is one, compared to previous claims. We also suggest that the N=3
theories may exhibit, for some values of N and M, duality cascades similar to
those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde
MIR376A is a regulator of starvation-induced autophagy
Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration.
Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR.
Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role.
Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy
Morphological characterization of the blood cells in the endangered Sicilian endemic pond turtle,Emys trinacris(Testudines: Emydidae)
In this study, measurements of morphological parameters, sizes and frequencies of peripheral blood cells (erythrocytes,
leukocytes, thrombocytes) on blood smear preparation devices stained with May-Grünwald stain were evaluated for both
sexes in 20 Emys trinacris (Testudines: Emydidae) specimens. Erythrocytes were higher in male than in female specimens.
The leukocyte of E. trinacris contains eosinophil, basophil, monocyte, heterophil and lymphocyte. The eosinophil was higher
in males than in females whereas lymphocytes were higher in females than in males. The erythrocyte morphological
parameters (EL [erythrocyte length], EW [erythrocyte width], L/W [length/width], ES [erythrocyte size]) were compared
with the same data from Emys orbicularis s.l, and from species belonging to other chelonian genera. The erythrocyte size did
not vary within the studied Palearctic Emys taxa, whereas it proved to differ from that observed in other chelonians
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Recommended from our members
An assessment of the impact of herb-drug combinations used by cancer patients
Background
Herb/Dietary Supplements (HDS) are the most popular Complementary and Alternative Medicine (CAM) modality used by cancer patients and the only type which involves the ingestion of substances which may interfere with the efficacy and safety of conventional medicines. This study aimed to assess the level of use of HDS in cancer patients undergoing treatment in the UK, and their perceptions of their effects, using 127 case histories of patients who were taking HDS. Previous studies have evaluated the risks of interactions between HDS and conventional drugs on the basis on numbers of patient using HDSs, so our study aimed to further this exploration by examining the actual drug combinations taken by individual patients and their potential safety.
Method
Three hundred seventy-five cancer patients attending oncology departments and centres of palliative care at the Oxford University Hospitals Trust (OUH), Duchess of Kent House, Sobell House, and Nettlebed Hospice participated in a self-administered questionnaire survey about their HDS use with their prescribed medicines. The classification system of Stockley’s Herbal Medicine’s Interactions was adopted to assess the potential risk of herb-drug interactions for these patients.
Results
127/375 (34 %; 95 % CI 29, 39) consumed HDS, amounting to 101 different products. Most combinations were assessed as ‘no interaction’, 22 combinations were categorised as ‘doubt about outcomes of use’, 6 combinations as ‘Potentially hazardous outcome’, one combination as an interaction with ‘Significant hazard’, and one combination as an interaction of “Life-threatening outcome”. Most patients did not report any adverse events.
Conclusion
Most of the patients sampled were not exposed to any significant risk of harm from interactions with conventional medicines, but it is not possible as yet to conclude that risks in general are over-estimated. The incidence of HDS use was also less than anticipated, and significantly less than reported in other areas, illustrating the problems when extrapolating results from one region (the UK), in one setting (NHS oncology) in where patterns of supplement use may be very different to those elsewhere
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.
Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis
Factors influencing success of clinical genome sequencing across a broad spectrum of disorders
To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges
- …
