12,002 research outputs found
Pharmacy Student's perceptions of Natural Science and Mathematics Subjects
Objective. To determine the level of importance pharmacy students placed on science and mathematics
subjects for pursuing a career in pharmacy.
Method. Two hundred fifty-four students completed a survey instrument developed to investigate
students’ perceptions of the relevance of science and mathematics subjects to a career in pharmacy.
Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to
complete the survey instrument.
Results. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career,
whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed
important to a career in pharmacy.
Conclusion. Students’ experience in pharmacy and year of study influenced their perceptions of subjects
relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize
the importance of scientific knowledge earlier in the pharmacy curriculum
Diversity in the organization of elastin bundles and intramembranous muscles in bat wings
Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross‐polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the constituents of the skin of the wing likely plays a key role in shaping wings during flight
Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting
We present an analytical method to quantify clustering in super-resolution
localization images of static surfaces in two dimensions. The method also
describes how over-counting of labeled molecules contributes to apparent
self-clustering and how the effective lateral resolution of an image can be
determined. This treatment applies to clustering of proteins and lipids in
membranes, where there is significant interest in using super-resolution
localization techniques to probe membrane heterogeneity. When images are
quantified using pair correlation functions, the magnitude of apparent
clustering due to over-counting will vary inversely with the surface density of
labeled molecules and does not depend on the number of times an average
molecule is counted. Over-counting does not yield apparent co-clustering in
double label experiments when pair cross-correlation functions are measured. We
apply our analytical method to quantify the distribution of the IgE receptor
(Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells
from images acquired using stochastic optical reconstruction microscopy (STORM)
and scanning electron microscopy (SEM). We find that apparent clustering of
labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from
over-counting of individual complexes. Thus our results indicate that these
receptors are randomly distributed within the resolution and sensitivity limits
of these experiments.Comment: 22 pages, 5 figure
Evaluation of homelessness services to adults in the secure estate
This evaluation aimed to assess how changes to legislative duties towards those leaving custody since 2015 had been implemented by local authorities, prisons and probation providers; what impact the changes had on housing prison leavers; and to identify areas of good practice in meeting the housing needs of prison leavers.
Chapter 1 provide some understanding the policy context for the development and implementation of the National Pathway for Homelessness Services to Adults in the Secure Estate. Chapter 2 briefly covers the existing delivery arrangements for the pathway. A background paper accompanies this report and provides more in depth
exploration of both these issues. Chapter 3 describes the methodology adopted to undertake the evaluation. In turn thereafter, chapters 4, 5 and 6 respectively present the findings in relation to the operation of the National Pathway at the reception, prerelease and community stages of a prisoner’s journey into and out of custody. In Chapter 7, better practices in relation to implementing the National Pathway are discussed. Finally in chapter 8 the evaluation findings are summarised and recommendations for improving practices are identified
Recommended from our members
Natural selection on individual variation in tolerance of gastrointestinal nematode infection
This is the final version of the article. Available from the publisher via the DOI in this record.Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host-parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites.This study was funded by Natural Environment Research Council (http://www.nerc.ac.uk/) Standard Grant no. NE/G004854/1 and European Research
Council (http://erc.europa.eu/) Large Grant no. 250098 to JMP. ADH is supported by European Research Council grant no. R/120448-11-1 to V. Lummaa; DHN is
supported by Biotechnology and Biological Sciences Research Council (http://www.bbsrc.ac.uk/) David Phillips Fellowship no. BB/H021686/1; AJW is supported by
BBSRC David Phillips Fellowship no. BB/G022976/1; ALG is supported by Princeton University and the Research and Policy for Infectious Disease Dynamics
(RAPIDD) program of the Science and Technology Directorate, U.S. Department of Homeland Security, and the Fogarty International Center of the National
Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
An evaluation of the epidemiology of medication discrepancies and clinical significance of medicines reconciliation in children admitted to hospital.
To determine the incidence of unintended medication discrepancies in paediatric patients at the time of hospital admission; evaluate the process of medicines reconciliation; assess the benefit of medicines reconciliation in preventing clinical harm
Multispecies genetic objectives in spatial conservation planning.
The growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision-making. Yet there is no clear-cut guidance on how genetic features can be incorporated into conservation planning processes, with multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns also differ between species, but the potential trade-offs amongst genetic objectives for multiple species in conservation planning are currently understudied. This study compares spatial conservation prioritizations derived from two metrics of both genetic diversity (nucleotide and haplotype diversity) and genetic isolation (private haplotypes and local genetic differentiation) for mitochondrial DNA for five marine species. The findings show that conservation plans based solely on habitat representation noticeably differ from those additionally including genetic data, with habitat-based conservation plans selecting fewer conservation priority areas. Furthermore, all four genetic metrics selected approximately similar conservation priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, the results suggest that multi-species genetic conservation objectives are vital to create protected area networks that appropriately preserve community-level evolutionary patterns. This article is protected by copyright. All rights reserved
- …
