22,886 research outputs found
Accurate molecular polarizabilities with coupled-cluster theory and machine learning
The molecular polarizability describes the tendency of a molecule to deform
or polarize in response to an applied electric field. As such, this quantity
governs key intra- and inter-molecular interactions such as induction and
dispersion, plays a key role in determining the spectroscopic signatures of
molecules, and is an essential ingredient in polarizable force fields and other
empirical models for collective interactions. Compared to other ground-state
properties, an accurate and reliable prediction of the molecular polarizability
is considerably more difficult as this response quantity is quite sensitive to
the description of the underlying molecular electronic structure. In this work,
we present state-of-the-art quantum mechanical calculations of the static
dipole polarizability tensors of 7,211 small organic molecules computed using
linear-response coupled-cluster singles and doubles theory (LR-CCSD). Using a
symmetry-adapted machine-learning based approach, we demonstrate that it is
possible to predict the molecular polarizability with LR-CCSD accuracy at a
negligible computational cost. The employed model is quite robust and
transferable, yielding molecular polarizabilities for a diverse set of 52
larger molecules (which includes challenging conjugated systems, carbohydrates,
small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy
that exceeds that of hybrid density functional theory (DFT). The atom-centered
decomposition implicit in our machine-learning approach offers some insight
into the shortcomings of DFT in the prediction of this fundamental quantity of
interest
Periodic Anderson model with Holstein phonons for the description of the Cerium volume collapse
Recent experiments have suggested that the electron-phonon coupling may play
an important role in the volume collapse transition
in Cerium. A minimal model for the description of such transition is the
periodic Anderson model. In order to better understand the effect of the
electron-phonon interaction on the volume collapse transition, we study the
periodic Anderson model with coupling between Holstein phonons and electrons in
the conduction band. We find that the electron-phonon coupling enhances the
volume collapse, which is consistent with experiments in Cerium. While we start
with the Kondo Volume Collapse scenario in mind, our results capture some
interesting features of the Mott scenario, such as a gap in the conduction
electron spectra which grows with the effective electron-phonon coupling.Comment: 8 pages, 6 figure
Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype
Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities. © 2013 Chan et al
- …
