592 research outputs found
К вопросу о связи внешнеэкономической деятельности предприятия с инновационным его развитием
This paper responds to Daniel Dennett’s 2012 Praemium Erasmianum Essay Erasmus: Sometimes a Spin Doctor is Right in which he makes a distinction between manipulation and non-manipulative influence. Dennett argues that influence on an individual’s decision-making process is not manipulative so long as that individual’s rationality is involved. In this work we show that Dennett’s account of this distinction is, at best, incomplete. He fails to consider the many factors that implicitly weigh on a person’s rational decision-making process. That is, there are a number of manipulable factors that will always have some bearing on one’s rationality, ultimately influencing what reasons the individual ends up endorsing. We conclude that in order to make a clear distinction between ‘mere influence’ and manipulation, an appeal to rationality alone is not sufficient
Mean-Field and Non-Mean-Field Behaviors in Scale-free Networks with Random Boolean Dynamics
We study two types of simplified Boolean dynamics over scale-free networks,
both with synchronous update. Assigning only Boolean functions AND and XOR to
the nodes with probability and , respectively, we are able to analyze
the density of 1's and the Hamming distance on the network by numerical
simulations and by a mean-field approximation (annealed approximation). We show
that the behavior is quite different if the node always enters in the dynamic
as its own input (self-regulation) or not. The same conclusion holds for the
Kauffman KN model. Moreover, the simulation results and the mean-field ones (i)
agree well when there is no self-regulation, and (ii) disagree for small
when self-regulation is present in the model.Comment: 12 pages, 7 figure
Пространственный компонент в структуре глаголов физического действия
Цель данной статьи – определить роль пространственного компонента в семантической структуре глаголов физического действия
LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells
Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then also migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes melanoma cells' ability to invade. Our results demonstrate that LPP3 is the key enzyme in melanoma cells' breakdown of LPA, and confirm the importance of attractant breakdown in LPA-mediated cell steering
Sandpiles with height restrictions
We study stochastic sandpile models with a height restriction in one and two
dimensions. A site can topple if it has a height of two, as in Manna's model,
but, in contrast to previously studied sandpiles, here the height (or number of
particles per site), cannot exceed two. This yields a considerable
simplification over the unrestricted case, in which the number of states per
site is unbounded. Two toppling rules are considered: in one, the particles are
redistributed independently, while the other involves some cooperativity. We
study the fixed-energy system (no input or loss of particles) using cluster
approximations and extensive simulations, and find that it exhibits a
continuous phase transition to an absorbing state at a critical value zeta_c of
the particle density. The critical exponents agree with those of the
unrestricted Manna sandpile.Comment: 10 pages, 14 figure
Molecular misreading: The occurrence of frameshift proteins in different diseases
Neuronal homoeostasis requires a constant balance between biosynthetic and catabolic processes. Eukaryotic cells primarily use two distinct mechanisms for degradation: the proteasome and autophagy of aggregates by the lysosomes. We focused on the UPS (ubiquitin-proteasome system). As a result of molecular misreading, misframed UBB (ubiquitin B) (UBB+1) is generated. UBB+1 accumulates in the neuritic plaques and neurofibrillary tangles in all patients with AD (Alzheimer's disease) and in the neuronal and glial hallmarks of other tauopathies and in polyglutamine diseases such as Huntington's disease. UBB+1 is not present in synucleinopathies such as Parkinson's disease. We showed that UBB+1 causes UPS dysfunction, aggregation and apoptotic cell death. UBB+1 is also present in non-neurological cells, hepatocytes of the diseased liver and in muscles during inclusion body myositis. Other frequently occurring (age-related) diseases such as Type 2 (non-insulin-dependent) diabetes mellitus are currently under investigation. These findings point to the importance of the UPS in diseases and open new avenues for target identification of the main players of the UPS. Treatment of these diseases with tools (e.g. viral RNA interference constructs) to intervene with specific targets is the next step
Glauber dynamics in a single-chain magnet: From theory to real systems
The Glauber dynamics is studied in a single-chain magnet. As predicted, a
single relaxation mode of the magnetization is found. Above 2.7 K, the
thermally activated relaxation time is mainly governed by the effect of
magnetic correlations and the energy barrier experienced by each magnetic unit.
This result is in perfect agreement with independent thermodynamical
measurements. Below 2.7 K, a crossover towards a relaxation regime is observed
that is interpreted as the manifestation of finite-size effects. The
temperature dependences of the relaxation time and of the magnetic
susceptibility reveal the importance of the boundary conditions.Comment: Submitted to PRL 10 May 2003. Submitted to PRB 12 December 2003;
published 15 April 200
Public health measures and the rise of incidental surveillance:Considerations about private informational power and accountability
The public health measures implemented in response to the COVID-19 pandemic have resulted in a substantially increased shared reliance on private infrastructure and digital services in areas such as healthcare, education, retail, and the workplace. This development has (i) granted a number of private actors significant (informational) power, and (ii) given rise to a range of digital surveillance practices incidental to the pandemic itself. In this paper, we reflect on these secondary consequences of the pandemic and observe that, even though collateral data disclosure and additional activity monitoring appears to have been generally socially accepted as inevitable consequences of the pandemic, part and parcel of a larger conglomeration of emergency compromises, these increased surveillance practices were not directly justified by appeals to solidarity and public health in the same way that the instigating public health measures were. Based on this observation, and given the increased reliance on private actors for maintaining the digital space, we argue that governments have a duty to (i) seek and ensure that there are justifications for collateral data disclosure and activity monitoring by private actors in the context of (future) public health emergencies like the COVID-19 pandemic, and (ii) regulate and provide accountability mechanisms for and oversight over these private surveillance practices on par with governmental essential services that engage in surveillance activities.</p
- …
