804 research outputs found

    Astrometry of Galactic Star Forming Region Sharpless 269 with VERA : Parallax Measurements and Constraint on Outer Rotation Curve

    Full text link
    We have performed high-precision astrometry of H2O maser sources in Galactic star forming region Sharpless 269 (S269) with VERA. We have successfully detected a trigonometric parallax of 189+/-8 micro-arcsec, corresponding to the source distance of 5.28 +0.24/-0.22 kpc. This is the smallest parallax ever measured, and the first one detected beyond 5 kpc. The source distance as well as proper motions are used to constrain the outer rotation curve of the Galaxy, demonstrating that the difference of rotation velocities at the Sun and at S269 (which is 13.1 kpc away from the Galaxy's center) is less than 3%. This gives the strongest constraint on the flatness of the outer rotation curve and provides a direct confirmation on the existence of large amount of dark matter in the Galaxy's outer disk.Comment: 7 pages and 4 figures, Accepted by PASJ (Vol. 59, No. 5, October 25, 2007 issue

    Distance to NGC 281 in a Galactic Fragmenting Superbubble: Parallax Measurements with VERA

    Full text link
    We have used the Japanese VLBI array VERA to perform high-precision astrometry of an H2O maser source in the Galactic star-forming region NGC 281 West, which has been considered to be part of a 300-pc superbubble. We successfully detected a trigonometric parallax of 0.355+/-0.030 mas, corresponding to a source distance of 2.82+/-0.24 kpc. Our direct distance determination of NGC 281 has resolved the large distance discrepancy between previous photometric and kinematic studies; likely NGC 281 is in the far side of the Perseus spiral arm. The source distance as well as the absolute proper motions were used to demonstrate the 3D structure and expansion of the NGC 281 superbubble, ~650 pc in size parallel to the Galactic disk and with a shape slightly elongated along the disk or spherical, but not vertically elongated, indicating the superbubble expansion may be confined to the disk. We estimate the expansion velocity of the superbubble as ~20 km/s both perpendicular to and parallel to the Galactic disk with a consistent timescale of ~20 Myr.Comment: 16 pages, 5 figures, accepted for publication in PASJ, VERA special issu

    Absolute Proper Motions of H2O Masers Away from the Galactic Plane Measured with VERA in the "Superbubble" Region NGC 281

    Full text link
    We report on absolute proper-motion measurements of an H2O maser source in the NGC 281 West molecular cloud, which is located ~320 pc above the Galactic plane and is associated with an HI loop extending from the Galactic plane. We have conducted multi-epoch phase-referencing observations of the maser source with VERA (VLBI Exploration of Radio Astrometry) over a monitoring period of 6 months since May 2006. We find that the H2O maser features in NGC 281 West are systematically moving toward the southwest and further away from the Galactic plane with a vertical velocity of ~20-30 km/s at its estimated distance of 2.2-3.5 kpc. Our new results provide the most direct evidence that the gas in the NGC 281 region on the HI loop was blown out from the Galactic plane, most likely in a superbubble driven by multiple or sequential supernova explosions in the Galactic plane.Comment: 10 pages, 5 figures, PASJ in press (Vol. 59, No. 4; August 25, 2007 issue

    VLBI Astrometry of AGB Variables with VERA -- A Semiregular Variable S Crateris --

    Full text link
    We present a distance measurement for the semiregular variable S Crateris (S Crt) based on its annual parallax. With the unique dual beam system of the VLBI Exploration for Radio Astrometry (VERA) telescopes, we measured the absolute proper motion of a water maser spot associated with S Crt, referred to the quasar J1147-0724 located at an angular separation of 1.23^{\circ}. In observations spanning nearly two years, we have detected the maser spot at the LSR velocity of 34.7 km s1^{-1}, for which we measured the annual parallax of 2.33±\pm0.13 mas corresponding to a distance of 43023+25^{+25}_{-23} pc. This measurement has an accuracy one order of magnitude better than the parallax measurements of HIPPARCOS. The angular distribution and three-dimensional velocity field of maser spots indicate a bipolar outflow with the flow axis along northeast-southwest direction. Using the distance and photospheric temperature, we estimate the stellar radius of S Crt and compare it with those of Mira variables.Comment: 9 pages, 4 figures, accepted for publication in PASJ (Vol.60, No.5, October 25, VERA special issue

    Astrometry of Water Maser Sources in Nearby Molecular Clouds with VERA - II. SVS 13 in NGC 1333

    Full text link
    We report on the results of multi-epoch VLBI observations with VERA (VLBI Exploration of Radio Astrometry) of the 22 GHz H2O masers associated with the young stellar object SVS 13 in the NGC 1333 region. We have carried out phase-referencing VLBI astrometry and measured an annual parallax of the maser features in SVS 13 of 4.25+/-0.32 mas, corresponding to the distance of 235+/-18 pc from the Sun. Our result is consistent with a photometric distance of 220 pc previously reported. Even though the maser features were detectable only for 6 months, the present results provide the distance to NGC 1333 with much higher accuracy than photometric methods. The absolute positions and proper motions have been derived, revealing that the H2O masers with the LSR (local standard of rest) velocities of 7-8 km s-1 are most likely associated with VLA4A, which is a radio counterpart of SVS 13. The origin of the observed proper motions of the maser features are currently difficult to attribute to either the jet or the rotating circumstellar disk associated with VLA4A, which should be investigated through future high-resolution astrometric observations of VLA4A and other radio sources in NGC 1333.Comment: 9 pages, 5 figures. PASJ, in press (2008, Vol. 60, No. 1

    Fundamental Parameters of the Milky Way Galaxy Based on VLBI astrometry

    Full text link
    We present analyses to determine the fundamental parameters of the Galaxy based on VLBI astrometry of 52 Galactic maser sources obtained with VERA, VLBA and EVN. We model the Galaxy's structure with a set of parameters including the Galaxy center distance R_0, the angular rotation velocity at the LSR Omega_0, mean peculiar motion of the sources with respect to Galactic rotation (U_src, V_src, W_src), rotation-curve shape index, and the V component of the Solar peculiar motions V_sun. Based on a Markov chain Monte Carlo method, we find that the Galaxy center distance is constrained at a 5% level to be R_0 = 8.05 +/- 0.45 kpc, where the error bar includes both statistical and systematic errors. We also find that the two components of the source peculiar motion U_src and W_src are fairly small compared to the Galactic rotation velocity, being U_src = 1.0 +/- 1.5 km/s and W_src = -1.4 +/- 1.2 km/s. Also, the rotation curve shape is found to be basically flat between Galacto-centric radii of 4 and 13 kpc. On the other hand, we find a linear relation between V_src and V_sun as V_src = V_sun -19 (+/- 2) km/s, suggesting that the value of V_src is fully dependent on the adopted value of V_sun. Regarding the rotation speed in the vicinity of the Sun, we also find a strong correlation between Omega_0 and V_sun. We find that the angular velocity of the Sun, Omega_sun, which is defined as Omega_sun = Omega_0 + V_sun/R_0, can be well constrained with the best estimate of Omega_sun = 31.09 +/- 0.78 km/s/kpc. This corresponds to Theta_0 = 238 +/- 14 km/s if one adopts the above value of R_0 and recent determination of V_sun ~ 12 km/s.Comment: 14 pages, 6 figures, PASJ in pres

    Distance to Orion KL Measured with VERA

    Full text link
    We present the initial results of multi-epoch VLBI observations of the 22 GHz H2O masers in the Orion KL region with VERA (VLBI Exploration of Radio Astrometry). With the VERA dual-beam receiving system, we have carried out phase-referencing VLBI astrometry and successfully detected an annual parallax of Orion KL to be 2.29+/-0.10 mas, corresponding to the distance of 437+/-19 pc from the Sun. The distance to Orion KL is determined for the first time with the annual parallax method in these observations. Although this value is consistent with that of the previously reported, 480+/-80 pc, which is estimated from the statistical parallax method using proper motions and radial velocities of the H2O maser features, our new results provide the much more accurate value with an uncertainty of only 4%. In addition to the annual parallax, we have detected an absolute proper motion of the maser feature, suggesting an outflow motion powered by the radio source I along with the systematic motion of source I itself.Comment: 7 pages, 3 figures. PASJ, in press (Vol. 59, No. 5, October 25, 2007 issue

    The First Very Long Baseline Interferometry Image of 44 GHz Methanol Maser with the KVN and VERA Array (KaVA)

    Full text link
    We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.Comment: 19 pages, 3 figure
    corecore