507 research outputs found

    DRD4 genotype predicts longevity in mouse and human

    Get PDF
    Longevity is influenced by genetic and environmental factors. The brain's dopamine system may be particularly relevant, since it modulates traits (e.g., sensitivity to reward, incentive motivation, sustained effort) that impact behavioral responses to the environment. In particular, the dopamine D4 receptor (DRD4) has been shown to moderate the impact of environments on behavior and health. We tested the hypothesis that the DRD4 gene influences longevity and that its impact is mediated through environmental effects. Surviving participants of a 30-year-old population-based health survey (N = 310; age range, 90-109 years; the 90+ Study) were genotyped/resequenced at the DRD4 gene and compared with a European ancestry-matched younger population (N = 2902; age range, 7-45 years). We found that the oldest-old population had a 66% increase in individuals carrying the DRD4 7R allele relative to the younger sample (p = 3.5 × 10(-9)), and that this genotype was strongly correlated with increased levels of physical activity. Consistent with these results, DRD4 knock-out mice, when compared with wild-type and heterozygous mice, displayed a 7-9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment. These results support the hypothesis that DRD4 gene variants contribute to longevity in humans and in mice, and suggest that this effect is mediated by shaping behavioral responses to the environment.Fil: Grady, Deborah L.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Thanos, Panayotis K.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. Stony Brook University. Department of Psychology; Estados UnidosFil: Corrada, Maria M.. University of California. Department of Neurology; Estados UnidosFil: Barnett Jr., Jeffrey C.. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Ciobanu, Valentina. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Shustarovich, Diana. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Napoli, Anthony. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Moyzis, Alexandra G.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Grandy, David. Oregon Health Sciences University. Physiology and Pharmacology; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; ArgentinaFil: Wang, Gene-Jack. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Kawas, Claudia H.. University of California. Department of Neurology; Estados UnidosFil: Chen, Chuansheng. University of California. Department of Psychology and Social Behavior; Estados UnidosFil: Dong, Qi. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; ChinaFil: Wang, Eric. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Aria Diagnostics Inc.; Estados Unidos. University of California. Institute of Genomics and Bioinformatics; Estados UnidosFil: Volkow, Nora D.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. National Institute on Drug Abuse; Estados UnidosFil: Moyzis, Robert K.. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; China. University of California. Institute of Genomics and Bioinformatics; Estados Unido

    Shape-Optimized Electrooptic Beam Scanners: Experiment

    Full text link
    A new horn-shaped electrooptic scanner is described with significantly improved scanning sensitivity over rectangular-shaped devices. In the new device, the shape of the scanner is chosen to follow the trajectory of the beam. An example design is described that exhibits a factor of two larger scanning sensitivity than a rectangular device with comparable maximum scanning angle. Beam propagation simulations and measurements on an experimental device verify the scanner performance.Comment: 3 pages, 3 figures. IEEE Photonics Technology Letters. Author Jennifer C. Fang is currently known as Jennifer Andreoli-Fan

    Monitoring carbon dioxide concentration for early detection of spoilage in stored grain

    Get PDF
    Field experiments were conducted in storage silos to evaluate carbon dioxide sensors to monitor spoilage in grain prior to spoilage detection by traditional methods such as visual inspections and temperature cables. Carbon dioxide concentrations in the storage silo were monitored up to eight months and correlated to the presence of stored-product insects, molds and mycotoxin levels in the stored grain. The data showed that safe grain storage was observed at CO2 concentrations of 400 to 500 ppm. Higher concentrations of CO2 clearly showed mold spoilage or insect activity inside the grain storage silo. Carbon dioxide concentrations of 500 to 1200 ppm indicated onset of mold infection where as CO2 concentrations of 1500 to 4000 ppm and beyond clearly indicated severe mold infection or stored-product insects infestation. The percent kernel infection was in the range of 30% for CO2 concentrations of 500 to 1000 ppm to 90% for CO2 concentrations of 9000 ppm. Fungal concentrations were in the range of 2.0 ×102 colony forming units per gram (cfu/g) at 500 ppm CO2 concentration to 6.5 ×107 cfu/g at 9000 ppm CO2 concentration. Fungi of genera Aspergillus spp., Penicillium spp., and Fusarium spp. were isolated from spoiled grain. High concentration of fungi and presence of mycotoxins (aflatoxin: 2 ppb and Deoxynivalenol (DON): 1 ppm) were correlated with high CO2 concentration in the silos. The findings from this research will be helpful in providing more timely information regarding safe storage limits, aeration requirements and costs of spoilage mitigation measures such as turning, aerating and fumigating grain. Additionally, it will provide information on preventive stored grain quality management practices that should reduce residue levels of mycotoxins, pesticides and other foreign material in our food supply. The CO2 monitoring technology will increase the quality and quantity of stored grain, while saving the U.S. and global grain production, handling and processing industry millions of dollars annually. Keywords: Carbon dioxide, Grain storage, Stored-product insects, Mold and mycotoxi

    How VEGF-A and its splice variants affect breast cancer development – clinical implications

    Get PDF
    Background: Altered expression levels and structural variations in the vascular endothelial growth factor (VEGF) have been found to play important roles in cancer development and to be associated with the overall survival and therapy response of cancer patients. Particularly VEGF-A and its splice variants have been found to affect physiological and pathological angiogenic processes, including tumor angiogenesis, correlating with tumor progression, mostly caused by overexpression. This review focuses on the expression and impact of VEGF-A splice variants under physiologic conditions and in tumors and, in particular, the distribution and role of isoform VEGF(165)b in breast cancer. Conclusions and perspectives: Many publications already highlighted the importance of VEGF-A and its splice variants in tumor therapy, especially in breast cancer, which are summarized in this review. Furthermore, we were able to demonstrate that cytoplasmatic VEGFA/(165)b expression is higher in invasive breast cancer tumor cells than in normal tissues or stroma. These examples show that the detection of VEGF splice variants can be performed also on the protein level in formalin fixed tissues. Although no quantitative conclusions can be drawn, these results may be the starting point for further studies at a quantitative level, which can be a major step towards the design of targeted antibody-based (breast) cancer therapies
    corecore