39 research outputs found
The usefulness of rapid diagnostic tests in the new context of low malaria transmission in zanzibar.
BACKGROUND\ud
\ud
We assessed if histidine-rich-protein-2 (HRP2) based rapid diagnostic test (RDT) remains an efficient tool for Plasmodium falciparum case detection among fever patients in Zanzibar and if primary health care workers continue to adhere to RDT results in the new epidemiological context of low malaria transmission. Further, we evaluated the performance of RDT within the newly adopted integrated management of childhood illness (IMCI) algorithm in Zanzibar.\ud
\ud
METHODS AND FINDINGS\ud
\ud
We enrolled 3890 patients aged ≥2 months with uncomplicated febrile illness in this health facility based observational study conducted in 12 primary health care facilities in Zanzibar, between May-July 2010. One patient had an inconclusive RDT result. Overall 121/3889 (3.1%) patients were RDT positive. The highest RDT positivity rate, 32/528 (6.1%), was found in children aged 5-14 years. RDT sensitivity and specificity against PCR was 76.5% (95% CI 69.0-83.9%) and 99.9% (95% CI 99.7-100%), and against blood smear microscopy 78.6% (95% CI 70.8-85.1%) and 99.7% (95% CI 99.6-99.9%), respectively. All RDT positive, but only 3/3768 RDT negative patients received anti-malarial treatment. Adherence to RDT results was thus 3887/3889 (99.9%). RDT performed well in the IMCI algorithm with equally high adherence among children <5 years as compared with other age groups.\ud
\ud
CONCLUSIONS\ud
\ud
The sensitivity of HRP-2 based RDT in the hands of health care workers compared with both PCR and microscopy for P. falciparum case detection was relatively low, whereas adherence to test results with anti-malarial treatment was excellent. Moreover, the results provide evidence that RDT can be reliably integrated in IMCI as a tool for improved childhood fever management. However, the relatively low RDT sensitivity highlights the need for improved quality control of RDT use in primary health care facilities, but also for more sensitive point-of-care malaria diagnostic tools in the new epidemiological context of low malaria transmission in Zanzibar.\ud
\ud
TRIAL REGISTRATION\ud
\ud
ClinicalTrials.gov NCT01002066
Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda
Artemisinin resistance is rapidly spreading in Southeast Asia. The efficacy of artemisinin-combination therapy (ACT) continues to be excellent across Africa. We performed parasite transcriptional profiling and genotyping on samples from an antimalarial treatment trial in Uganda. We used qRT-PCR and genotyping to characterize residual circulating parasite populations after treatment with either ACT or ACT-primaquine. Transcripts suggestive of circulating ring stage parasites were present after treatment at a prevalence of >25% until at least 14 days post initiation of treatment. Greater than 98% of all ring stage parasites were cleared within the first 3 days, but subsequently persisted at low concentrations until day 14 after treatment. Genotyping demonstrated a significant decrease in multiplicity of infection within the first 2 days in both ACT and ACT-primaquine arms. However, multiple clone infections persisted until day 14 post treatment. Our data suggest the presence of genetically diverse persisting parasite populations after ACT treatment. Although we did not demonstrate clinical treatment failures after ACT and the viability and transmissibility of persisting ring stage parasites remain to be shown, these findings are of relevance for the interpretation of parasite clearance transmission dynamics and for monitoring drug effects in Plasmodium falciparum parasites
Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu Loci of Plasmodium falciparum in Kenyan children treated With ACT
Background The efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria may be threatened by parasites with reduced responsiveness to artemisinins. Among 298 ACT-treated children from Mbita, Kenya, submicroscopic persistence of P. falciparum on day 3 posttreatment was associated with subsequent microscopically detected parasitemia at days 28 or 42. Methods DNA sequences of resistance-associated parasite loci pfcrt, pfmdr1, pfubp1, and pfap2mu were determined in the Mbita cohort before treatment, on days 2 and 3 after initiation of treatment, and on the day of treatment failure. Results Parasites surviving ACT on day 2 or day 3 posttreatment were significantly more likely than the baseline population to carry the wild-type haplotypes of pfcrt (CVMNK at codons 72–76; P < .001) and pfmdr1 (NFD at codons 86, 184, 1246; P < .001). In contrast, variant alleles of the novel candidate resistance genes pfap2mu (S160N/T; P = .006) and pfubp-1 (E1528D; P < .001) were significantly more prevalent posttreatment. No genetic similarities were found to artemisinin-tolerant parasites recently described in Cambodia. Conclusions Among treated children in western Kenya, certain P. falciparum genotypes defined at pfcrt, pfmdr1, pfap2mu, and pfubp1 more often survive ACT at the submicroscopic level, and contribute to onward transmission and subsequent patent recrudescence
A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
Characterizing microscopic and submicroscopic malaria parasitaemia at three sites with varied transmission intensity in Uganda
Accuracy of Pf HRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso
Identifying Recrudescent Plasmodium falciparum in Treated Malaria Patients by Real-time PCR and High Resolution Melt Analysis of Genetic Diversity
Culture-adapted Plasmodium falciparum isolates from UK travellers: in vitro drug sensitivity, clonality and drug resistance markers
Background The screening of lead compounds against in vitro parasite cultures is an essential step in the development of novel anti-malarial drugs, but currently relies on laboratory parasite lines established in vitro during the last century. This study sought to establish in continuous culture a series of recent Plasmodium falciparum isolates to represent the current parasite populations in Africa, all of which are now exposed to artemisinin combination therapy. Methods Pre-treatment P. falciparum isolates were obtained in EDTA, and placed into continuous culture after sampling of DNA. One post-treatment blood sample was also collected for each donor to monitor parasite clonality during clearance in vivo. IC50 estimates were obtained for 11 anti-malarial compounds for each established parasite line, clonal multiplicity measured in vivo and in vitro, and polymorphic sites implicated in parasite sensitivity to drugs were investigated at the pfmdr1, pfcrt, pfdhfr, pfdhps and pfap2mu loci before and after treatment, and in the cultured lines. Results Plasmodium falciparum isolates from seven malaria patients with recent travel to three West African and two East African countries were successfully established in long-term culture. One of these, HL1211, was from a patient with recrudescent parasitaemia 14 days after a full course of artemether-lumefantrine. All established culture lines were shown to be polyclonal, reflecting the in vivo isolates from which they were derived, and at least two lines reliably produce gametocytes in vitro. Two lines displayed high chloroquine IC50 estimates, and carried the CVIET haplotype at codons 72–76, whereas the remaining five lines carried the CVMNK haplotype and were sensitive in vitro. All were sensitive to the endoperoxides dihydroartemisinin and OZ277, but IC50 estimates for lumefantrine varied, with the least sensitive parasites carrying pfmdr1 alleles encoding Asn at codon 86. Conclusions This study describes the establishment in continuous culture, in vitro drug sensitivity testing and molecular characterization of a series of multiclonal P. falciparum isolates taken directly from UK malaria patients following recent travel to various malaria-endemic countries in Africa. These “HL” isolates are available as an open resource for studies of drug response, antigenic diversity and other aspects of parasite biology
Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu Loci of Plasmodium falciparum in Kenyan children treated With ACT
Background The efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria may be threatened by parasites with reduced responsiveness to artemisinins. Among 298 ACT-treated children from Mbita, Kenya, submicroscopic persistence of P. falciparum on day 3 posttreatment was associated with subsequent microscopically detected parasitemia at days 28 or 42. Methods DNA sequences of resistance-associated parasite loci pfcrt, pfmdr1, pfubp1, and pfap2mu were determined in the Mbita cohort before treatment, on days 2 and 3 after initiation of treatment, and on the day of treatment failure. Results Parasites surviving ACT on day 2 or day 3 posttreatment were significantly more likely than the baseline population to carry the wild-type haplotypes of pfcrt (CVMNK at codons 72–76; P < .001) and pfmdr1 (NFD at codons 86, 184, 1246; P < .001). In contrast, variant alleles of the novel candidate resistance genes pfap2mu (S160N/T; P = .006) and pfubp-1 (E1528D; P < .001) were significantly more prevalent posttreatment. No genetic similarities were found to artemisinin-tolerant parasites recently described in Cambodia. Conclusions Among treated children in western Kenya, certain P. falciparum genotypes defined at pfcrt, pfmdr1, pfap2mu, and pfubp1 more often survive ACT at the submicroscopic level, and contribute to onward transmission and subsequent patent recrudescence
