51 research outputs found
Relationship between cerebrospinal fluid neurodegeneration biomarkers and temporal brain atrophy in cognitively healthy older adults
It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 (p-tau) and the 42 amino acid form of amyloid-ꞵ (Aꞵ42) biomarkers, and which neural substrates may drive these associations. We addressed these questions in two samples of cognitively healthy older adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart-type fatty-acid binding protein [FABP3], total-tau, neurogranin, and neurofilament light [NFL] (n=189, scans=721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hippocampal atrophy. Brain atrophy was not moderated by Aꞵ42 and the associations between NFL and FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associated with the biomarkers overlapped with neurogenetic profiles associated with expression in the axonal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau pathology biomarkers
Tripartite Relationship Among Synaptic, Amyloid, and Tau Proteins: An In Vivo and Postmortem Study
[Abstract contains special characters which do not display correctly.
Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition
Amyloid deposition occurs in aging, even in individuals free from cognitive symptoms, and is often interpreted as preclinical Alzheimer’s disease (AD) pathophysiology. YKL-40 is a marker of neuroinflammation, being increased in AD, and hypothesized to interact with amyloid-β (Aβ) in causing cognitive decline early in the cascade of AD pathophysiology. Whether and how Aβ and YKL-40 affect brain and cognitive changes in cognitively healthy older adults is still unknown. We studied 89 participants (mean age: 73.1 years) with cerebrospinal fluid samples at baseline, and both MRI and cognitive assessments from two time-points separated by two years. We tested how baseline levels of Aβ42 and YKL-40 correlated with changes in cortical thickness and cognition. Thickness change correlated with Aβ42 only in Aβ42+ participants (<600 pg/mL, n = 27) in the left motor and premotor cortices. Aβ42 was unrelated to cognitive change. Increased YKL-40 was associated with less preservation of scores on the animal naming test in the total sample (r = –0.28, p = 0.012) and less preservation of a score reflecting global cognitive function for Aβ42+ participants (r = –0.58, p = 0.004). Our results suggest a role for inflammation in brain atrophy and cognitive changes in cognitively normal older adults, which partly depended on Aβ accumulation
Interim Design Report
The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth International Workshop on Neutrino Factories, super-beams, and beta- beams which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility
Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy
Sleep problems relate to brain changes in aging and disease, but the mechanisms are unknown. Studies suggest a relationship between β-amyloid (Aβ) accumulation and sleep, which is likely augmented by interactions with multiple variables. Here, we tested how different cerebrospinal fluid (CSF) biomarkers for brain pathophysiology, brain atrophy, memory function, and depressive symptoms predicted self-reported sleep patterns in 91 cognitively healthy older adults over a 3-year period. The results showed that CSF levels of total- and phosphorylated (P) tau, and YKL-40—a marker of neuroinflammation/astroglial activation—predicted poor sleep in Aβ positive older adults. Interestingly, although brain atrophy was strongly predictive of poor sleep, the relationships between CSF biomarkers and sleep were completely independent of atrophy. A joint analysis showed that unique variance in sleep was explained by P-tau and the P-tau × Aβ interaction, memory function, depressive symptoms, and brain atrophy. The results demonstrate that sleep relates to a range of different pathophysiological processes, underscoring the importance of understanding its impact on neurocognitive changes in aging and people with increased risk of Alzheimer's disease
Cerebrospinal Fluid and Plasma Levels of Inflammation Differentially Relate to CNS Markers of Alzheimer's Disease Pathology and Neuronal Damage
Inflammatory markers have been shown to predict neurocognitive outcomes in aging adults; however, the degree to which peripheral markers mirror the central nervous system remains unknown. We investigated the association between plasma and cerebrospinal fluid (CSF) markers of inflammation, and explored whether these markers independently predict CSF indicators of Alzheimer’s disease (AD) pathology or neuronal damage. Plasma and CSF samples were analyzed for inflammatory markers in a cohort of asymptomatic older adults (n = 173). CSF samples were analyzed for markers of AD pathology (Aβ42, phosphorylated tau [p-tau], sAβPPβ) or neuronal damage (total tau; neurofilament light chain) (n = 147). Separate linear models for each analyte were conducted with CSF and plasma levels entered simultaneously as predictors and markers of AD pathology or neuronal damage as outcome measures. Strong associations were noted between CSF and plasma MIP-1β levels, and modest associations were observed for remaining analytes. With respect to AD pathology, higher levels of plasma and CSF IL-8, CSF MIP-1β, and CSF IP-10 were associated with higher levels of p-tau. Higher levels of CSF IL-8 were associated with higher levels of CSF Aβ42. Higher CSF sAβPPβ levels were associated with higher plasma markers only (IL-8; MCP-1). In terms of neuronal injury, higher levels of plasma and CSF IL-8, CSF IP-10, and CSF MIP-1β were associated with higher levels of CSF total tau. Exploratory analyses indicated that CSF Aβ42 modifies the relationship between plasma inflammatory levels and CSF tau levels. Results suggest that both plasma and CSF inflammatory markers independently relay integral information about AD pathology and neuronal damage
WHEDA study: Effectiveness of occupational therapy at home for older people with dementia and their caregivers - the design of a pragmatic randomised controlled trial evaluating a Dutch programme in seven German centres
Contains fulltext :
80941.pdf (publisher's version ) (Open Access)BACKGROUND: A recent Dutch mono-centre randomised controlled trial has shown that occupational therapy improves daily functioning in dementia. The aim of this present study is to compare the effects of the Dutch community occupational therapy programme with a community occupational therapy consultation on daily functioning in older people with mild or moderate dementia and their primary caregivers in a German multi-centre context. METHODS/DESIGN: A multi-centre single blind randomised controlled trial design is being used in seven health care centres (neurological, psychiatric and for older people) in urban regions. Patients are 1:1 randomised to treatment or control group. Assessors are blind to group assignment and perform measurements on both groups at baseline, directly after intervention at 6 weeks and at 16, 26 and 52 weeks follow-up. A sample of 140 community dwelling older people (aged >65 years) with mild or moderate dementia and their primary caregivers is planned. The experimental intervention consists of an evidence-based community occupational therapy programme including 10 sessions occupational therapy at home. The control intervention consists of one community occupational therapy consultation based on information material of the Alzheimer Society. Providers of both interventions are occupational therapists experienced in treatment of cognitively impaired older people and trained in both programmes. 'Community' indicates that occupational therapy intervention occurs in the person's own home. The primary outcome is patients' daily functioning assessed with the performance scale of the Interview for Deterioration in Daily Living Activities in Dementia and video tapes of daily activities rated by external raters blind to group assignment using the Perceive, Recall, Plan and Perform System of Task Analysis. Secondary outcomes are patients' and caregivers' quality of life, mood and satisfaction with treatment; the caregiver's sense of competence, caregiver's diary (medication, resource utilisation, time of informal care); and the incidence of long-term institutionalisation. Process evaluation is performed by questionnaires and focus group discussion. DISCUSSION: The transfer from the Dutch mono-centre design to the pragmatic multi-site trial in a German context implicates several changes in design issues including differences in recruitment time, training of interventionists and active control group treatment.The study is registered under DRKS00000053 at the German register of clinical trials, which is connected to the International Clinical Trials Registry Platform
Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer’s dementia
Serial blood cytokine and chemokine mRNA and microRNA over 48 h are insult specific in a piglet model of inflammation-sensitized hypoxia-ischaemia.
BACKGROUND: Exposure to inflammation exacerbates injury in neonatal encephalopathy (NE). We hypothesized that brain biomarker mRNA, cytokine mRNA and microRNA differentiate inflammation (E. coli LPS), hypoxia (Hypoxia), and inflammation-sensitized hypoxia (LPS+Hypoxia) in an NE piglet model. METHODS: Sixteen piglets were randomized: (i) LPS 2 μg/kg bolus; 1 μg/kg infusion (LPS; n = 5), (ii) Saline with hypoxia (Hypoxia; n = 6), (iii) LPS commencing 4 h pre-hypoxia (LPS+Hypoxia; n = 5). Total RNA was acquired at baseline, 4 h after LPS and 1, 3, 6, 12, 24, 48 h post-insult (animals euthanized at 48 h). Quantitative PCR was performed for cytokines (IL1A, IL6, CXCL8, IL10, TNFA) and brain biomarkers (ENO2, UCHL1, S100B, GFAP, CRP, BDNF, MAPT). MicroRNA was detected using GeneChip (Affymetrix) microarrays. Fold changes from baseline were compared between groups and correlated with cell death (TUNEL) at 48 h. RESULTS: Within 6 h post-insult, we observed increased IL1A, CXCL8, CCL2 and ENO2 mRNA in LPS+Hypoxia and LPS compared to Hypoxia. IL10 mRNA differentiated all groups. Four microRNAs differentiated LPS+Hypoxia and Hypoxia: hsa-miR-23a, 27a, 31-5p, 193-5p. Cell death correlated with TNFA (R = 0.69; p < 0.01) at 1-3 h and ENO2 (R = -0.69; p = 0.01) at 48 h. CONCLUSIONS: mRNA and miRNA differentiated hypoxia from inflammation-sensitized hypoxia within 6 h in a piglet model. This information may inform human studies to enable triage for tailored neuroprotection in NE. IMPACT: Early stratification of infants with neonatal encephalopathy is key to providing tailored neuroprotection. IL1A, CXCL8, IL10, CCL2 and NSE mRNA are promising biomarkers of inflammation-sensitized hypoxia. IL10 mRNA levels differentiated all three pathological states; fold changes from baseline was the highest in LPS+Hypoxia animals, followed by LPS and Hypoxia at 6 h. miR-23, -27, -31-5p and -193-5p were significantly upregulated within 6 h of a hypoxia insult. Functional analysis highlighted the diverse roles of miRNA in cellular processes
Diffusion imaging changes in grey matter in Alzheimer’s disease: a potential marker of early neurodegeneration
- …
