7,904 research outputs found

    A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties. The Connectivity Map was a novel concept and innovative tool first introduced by Lamb et al to connect small molecules, genes, and diseases using genomic signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the Connectivity Map had some limitations, particularly there was no effective safeguard against false connections if the observed connections were considered on an individual-by-individual basis. Further when several connections to the same small-molecule compound were viewed as a set, the implicit null hypothesis tested was not the most relevant one for the discovery of real connections. Here we propose a simple and robust method for constructing the reference gene-expression profiles and a new connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with the two example gene-signatures (HDAC inhibitors and Estrogens) used by Lamb et al and also a new gene signature of immunosuppressive drugs. Our testing with this new method shows that it achieves a higher level of specificity and sensitivity than the original method. For example, our method successfully identified raloxifene and tamoxifen as having significant anti-estrogen effects, while Lamb et al's Connectivity Map failed to identify these. With these properties our new method has potential use in drug development for the recognition of pharmacological and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a ZIP fil

    sscMap: An extensible Java application for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Background: Connectivity mapping is a process to recognize novel pharmacological and toxicological properties in small molecules by comparing their gene expression signatures with others in a database. A simple and robust method for connectivity mapping with increased specificity and sensitivity was recently developed, and its utility demonstrated using experimentally derived gene signatures. Results: This paper introduces sscMap (statistically significant connections' map), a Java application designed to undertake connectivity mapping tasks using the recently published method. The software is bundled with a default collection of reference gene-expression profiles based on the publicly available dataset from the Broad Institute Connectivity Map 02, which includes data from over 7000 Affymetrix microarrays, for over 1000 small-molecule compounds, and 6100 treatment instances in 5 human cell lines. In addition, the application allows users to add their custom collections of reference profiles and is applicable to a wide range of other 'omics technologies. Conclusions: The utility of sscMap is two fold. First, it serves to make statistically significant connections between a user-supplied gene signature and the 6100 core reference profiles based on the Broad Institute expanded dataset. Second, it allows users to apply the same improved method to custom-built reference profiles which can be added to the database for future referencing. The software can be freely downloaded from http://purl.oclc.org/NET/sscMapComment: 3 pages, 1 table, 1 eps figur

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Social support and sense of loneliness in solitary older adults

    Get PDF
    Older people are vulnerable to loneliness and isolation. Solitary seniors are more likely to suffer the feelings of loneliness with inadequate social networks. Based on a face-to-face questionnaire survey with 151 community-dwelling solitary seniors, the present study examined the associations between social support and the sense of loneliness among solitary older adults in Hong Kong. The results showed that poor mental health status, financial inadequacy and weak social support networks were significantly associated with the sense of loneliness of solitary older adults, with social support being the most prominent risk factor. Frequent contacts with siblings, relatives or friends were found to be important sources of social support to combat loneliness. Policy and service implications are discussed

    AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts

    Get PDF
    published_or_final_versio

    Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations

    Get PDF
    Classical conformal blocks naturally appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3/CFT2AdS_{3}/CFT_{2} correspondence, they are related to classical bulk actions and are used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlev\'e VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ\tau-function. We also discuss how the c=1c = 1 expansion of the τ\tau-function leads to a novel approach to calculate the 4-point classical conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli space and monodromies, numerical and analytic checks; v2: added refs, fixed emai

    Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases

    Full text link
    Water freezes into ice, atomic spins spontaneously align in a magnet, liquid helium becomes superfluid: Phase transitions are dramatic phenomena. However, despite the drastic change in the system's behaviour, observing the transition can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and superfluidity in trapped, weakly interacting Bose gases is the sudden appearance of a dense central core inside a thermal cloud. In strongly interacting gases, such as the recently observed fermionic superfluids, this clear separation between the superfluid and the normal parts of the cloud is no longer given. Condensates of fermion pairs could be detected only using magnetic field sweeps into the weakly interacting regime. The quantitative description of these sweeps presents a major theoretical challenge. Here we demonstrate that the superfluid phase transition can be directly observed by sudden changes in the shape of the clouds, in complete analogy to the case of weakly interacting Bose gases. By preparing unequal mixtures of the two spin components involved in the pairing, we greatly enhance the contrast between the superfluid core and the normal component. Furthermore, the non-interacting wings of excess atoms serve as a direct and reliable thermometer. Even in the normal state, strong interactions significantly deform the density profile of the majority spin component. We show that it is these interactions which drive the normal-to-superfluid transition at the critical population imbalance of 70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure

    Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    Full text link
    The in-plane anisotropy of the electrical resistivity across the coupled orthorhombic and magnetic transitions of the iron pnictides has been extensively studied in the parent and electron-doped compounds. All these studies universally show that the resistivity ρa\rho_{a} across the long orthorhombic axis aOa_{O} - along which the spins couple antiferromagnetically below the magnetic transition temperature - is smaller than the resistivity ρb\rho_{b} of the short orthorhombic axis bOb_{O}, i. e. ρa<ρb\rho_{a}<\rho_{b}. Here we report that in the hole-doped compounds Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}, as the doping level increases, the resistivity anisotropy initially becomes vanishingly small, and eventually changes sign for sufficiently large doping, i. e. ρb<ρa\rho_{b}<\rho_{a}. This observation is in agreement with a recent theoretical prediction that considers the anisotropic scattering of electrons by spin-fluctuations in the orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new explanation of the experimental results first reported her

    Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end

    Get PDF
    Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process
    corecore