160 research outputs found
Pitfalls associated with lipophilic fluorophore staining of extracellular vesicles for uptake studies
Post-staining of extracellular vesicles (EVs) with lipid-anchored fluorophores (LAFs) such as PKH67 is a widely used strategy for studying EVs but it is associated with several pitfalls. The pitfalls discussed in this commentary are related to LAF labelling of non-EV species due to (1) lipoprotein contamination in EV samples, (2) desorption of the LAF reporters from vesicles into proteins and lipoproteins in blood and serum, and (3) the capability of the amphiphilic LAF compounds to form EV-like particles. Awareness of these challenges and developing solutions to overcome these are important to ensure that we make relevant interpretations when using LAFs to track EVs
The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression
Upon translation, the N-terminal homology box 1 (NHB1) signal anchor sequence of Nrf1 integrates it within the endoplasmic reticulum (ER) whilst its transactivation domains [TADs, including acidic domain 1 (AD1), the flanking Asn/Ser/Thr-rich (NST) domain and AD2] are transiently translocated into the ER lumen, whereupon the NST domain is glycosylated to yield an inactive 120-kDa glycoprotein. Subsequently, these TADs are retrotranslocated into extra-luminal subcellular compartments, where Nrf1 is deglycosylated to yield an active 95-kDa isoform. Herein, we report that AD1 and AD2 are required for the stability of the 120-kDa Nrf1 glycoprotein, but not that of the non-glycosylated/de-glycosylated 95-kDa isoform. Degrons within AD1 do not promote proteolytic degradation of the 120-kDa Nrf1 glycoprotein. However, repositioning of AD2-adjoining degrons (i.e. DSGLS-containing SDS1 and PEST2 sequences) into the cyto/nucleoplasm enables selective topovectorial processing of Nrf1 by the proteasome and/or calpains to generate a cleaved active 85-kDa Nrf1 or a dominant-negative 36-kDa Nrf1γ. Production of Nrf1γ is abolished by removal of SDS1 or PEST2 degrons, whereas production of the cleaved 85-kDa Nrf1 is blocked by deletion of the ER luminal-anchoring NHB2 sequence (aa 81–106). Importantly, Nrf1 activity is positively and/or negatively regulated by distinct doses of proteasome and calpain inhibitors
Cholinergic dysfunction in isolated rapid eye movement sleep behaviour disorder links to impending phenoconversion
\ua9 2024 The Author(s). European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.Background and purpose: Most patients with isolated rapid eye movement sleep behaviour disorder (iRBD) progress to a parkinsonian alpha-synucleinopathy. However, time to phenoconversion shows great variation. The aim of this study was to investigate whether cholinergic and dopaminergic dysfunction in iRBD patients was associated with impending phenoconversion. Methods: Twenty-one polysomnography-confirmed iRBD patients underwent baseline 11C-donepezil and 6-Fluoro-(18F)-l-3,4-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET). Potential phenoconversion was monitored for up to 8 years. PET images were analysed according to patients\u27 diagnoses after 3 and 8 years using linear regression. Time-to-event analysis was made with Cox regression, dividing patients into low and high tracer uptake groups. Results: Follow-up was accomplished in 17 patients. Eight patients progressed to either Parkinson\u27s disease (n = 4) or dementia with Lewy bodies (n = 4), while nine remained non-phenoconverters. Compared with non-phenoconverters, 8-year phenoconverters had lower mean 11C-donepezil uptake in the parietal (p = 0.032) and frontal cortex (p = 0.042), whereas mean 11C-donepezil uptake in 3-year phenoconverters was lower in the parietal cortex (p = 0.005), frontal cortex (p = 0.025), thalamus (p = 0.043) and putamen (p = 0.049). Phenoconverters within 3 years and 8 years had lower 18F-DOPA uptake in the putamen (p < 0.001). iRBD patients with low parietal 11C-donepezil uptake had a 13.46 (95% confidence interval 1.42;127.21) times higher rate of phenoconversion compared with those with higher uptake (p = 0.023). iRBD patients with low 18F-DOPA uptake in the most affected putamen were all phenoconverters with higher rate of phenoconversion (p = 0.0002). Conclusions: These findings suggest that cortical cholinergic dysfunction, particularly within the parietal cortex, could be a biomarker candidate for predicting short-term phenoconversion in iRBD patients. This study aligns with previous reports suggesting dopaminergic dysfunction is associated with forthcoming phenoconversion
Maspin is a tumour suppressor that inhibits breast cancer tumour metastasis in vivo
Maspin is a member of the serpin family of serine proteases and functions as a tumour suppressor. A study using a new syngeneic mouse model for breast cancer suggests that maspin can inhibit metastasis in vivo
Variants in the <em>DDX6-CXCR5</em> autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland
\ua9 2025 The Author(s). Objectives: Sj\uf6gren\u27s disease (SjD) and systemic lupus erythematosus (SLE) share genetic risk at the DDX6-CXCR5 locus (11q23.3). Identifying and functionally characterising shared SNPs spanning this locus can provide new insights into common genetic mechanisms of autoimmunity. Methods: Transdisease meta-analyses, fine-mapping, and bioinformatic analyses prioritised shared likely functional single nucleotide polymorphisms (SNPs) for allele-specific and cell type–specific functional interrogation using electromobility shift, luciferase reporter, and quantitative chromatin conformation capture assays and clustered regularly interspaced short palindromic repeat (CRISPR) gene regulation. Results: Five shared SNPs were identified as likely functional in primary human immune cells, salivary gland and kidney tissues: rs57494551, rs4936443, rs4938572, rs7117261, and rs4938573. All 5 SNPs exhibited cell type-specific and allele-specific effects on nuclear protein binding affinity and enhancer/promoter regulatory activity in immune, salivary gland epithelial, and kidney epithelial cell models. Mapping of chromatin–chromatin interactions revealed a chromatin regulatory network that expanded beyond DDX6 and CXCR5 to include PHLDB1, lnc-PHLDB1-1, BCL9L, TRAPPC4, among others. Coalescence of functional assays and multiomic data analyses indicated that these SNPs likely modulate the activity of 3 regulatory regions: intronic rs57494551 regulatory region, intergenic SNP haplotype (rs4938572, rs4936443, and rs7117261) regulatory region, and rs4938573 regulatory region upstream of the CXCR5 promoter. Conclusions: Shared genetic susceptibly at the DDX6-CXCR5 locus in SjD and SLE likely alters common mechanisms of autoimmunity, including interferon signalling (DDX6), autophagy (TRAPPC4), and lymphocytic infiltration of disease-target tissues (CXCR5). Further, using multiomic data from patients with SjD, combined with bioinformatic and in vitro functional studies, can provide mechanistic insights into how genetic risk influences the biological pathways that drive complex autoimmunity
Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials
Background: Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response. /
Methods: We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab. /
Findings: In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, κ-free light chain, β2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo. /
Interpretation: Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases. /
Funding: UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology
Increased Number of Cerebellar Granule Cells and Astrocytes in the Internal Granule Layer in Sheep Following Prenatal Intra-amniotic Injection of Lipopolysaccharide
Chorioamnionitis is an important problem in perinatology today, leading to brain injury and neurological handicaps. However, there are almost no data available regarding chorioamnionitis and a specific damage of the cerebellum. Therefore, this study aimed at determining if chorioamnionitis causes cerebellar morphological alterations. Chorioamnionitis was induced in sheep by the intra-amniotic injection of lipopolysaccharide (LPS) at a gestational age (GA) of 110 days. At a GA of 140 days, we assessed the mean total and layer-specific volume and the mean total granule cell (GCs) and Purkinje cell (PC) number in the cerebelli of LPS-exposed and control animals using high-precision design-based stereology. Astrogliosis was assessed in the gray and white matter (WM) using a glial fibrillary acidic protein staining combined with gray value image analysis. The present study showed an unchanged volume of the total cerebellum as well as the molecular layer, outer and inner granular cell layers (OGL and IGL, respectively), and WM. Interestingly, compared with controls, the LPS-exposed brains showed a statistically significant increase (+20.4%) in the mean total number of GCs, whereas the number of PCs did not show any difference between the two groups. In addition, LPS-exposed animals showed signs of astrogliosis specifically affecting the IGL. Intra-amniotic injection of LPS causes morphological changes in the cerebellum of fetal sheep still detectable at full-term birth. In this study, changes were restricted to the inner granule layer. These cerebellar changes might correspond to some of the motor or non-motor deficits seen in neonates from compromised pregnancies
Comparison of polypeptides that bind the transferrin receptor for targeting gold nanocarriers
The ability to target therapeutic agents to specific tissues is an important element in the development of new disease treatments. The transferrin receptor (TfR) is one potential target for drug delivery, as it expressed on many dividing cells and on brain endothelium, the key cellular component of the blood-brain barrier. The aim of this study was to compare a set of new and previously-described polypeptides for their ability to bind to brain endothelium, and investigate their potential for targeting therapeutic agents to the CNS. Six polypeptides were ranked for their rate of endocytosis by the human brain endothelial cell line hCMEC/D3 and the murine line bEnd.3. One linear polypeptide and two cyclic polypeptides showed high rates of uptake. These peptides were investigated to determine whether serum components, including transferrin itself affected uptake by the endothelium. One of the cyclic peptides was strongly inhibited by transferrin and the other cyclic peptide weakly inhibited. As proof of principle the linear peptide was attached to 2nm glucose coated gold-nanoparticles, and the rate of uptake of the nanoparticles measured in a hydrogel model of the blood-brain barrier. Attachment of the TfR-targeting polypeptide significantly increased the rates of endocytosis by brain endothelium and increased movement of nanoparticles across the cells
Persistent Place-Making in Prehistory: the Creation, Maintenance, and Transformation of an Epipalaeolithic Landscape
Most archaeological projects today integrate, at least to some degree, how past people engaged with their surroundings, including both how they strategized resource use, organized technological production, or scheduled movements within a physical environment, as well as how they constructed cosmologies around or created symbolic connections to places in the landscape. However, there are a multitude of ways in which archaeologists approach the creation, maintenance, and transformation of human-landscape interrelationships. This paper explores some of these approaches for reconstructing the Epipalaeolithic (ca. 23,000–11,500 years BP) landscape of Southwest Asia, using macro- and microscale geoarchaeological approaches to examine how everyday practices leave traces of human-landscape interactions in northern and eastern Jordan. The case studies presented here demonstrate that these Epipalaeolithic groups engaged in complex and far-reaching social landscapes. Examination of the Early and Middle Epipalaeolithic (EP) highlights that the notion of “Neolithization” is somewhat misleading as many of the features we use to define this transition were already well-established patterns of behavior by the Neolithic. Instead, these features and practices were enacted within a hunter-gatherer world and worldview
Celecoxib suppresses autophagy and enhances cytotoxicity of imatinib in imatinib-resistant chronic myeloid leukemia cells
- …
