1,711 research outputs found
Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase
The conventional DNA polymerase machinery is unable to fully replicate the ends of linear chromosomes. To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication. This unique, non-DNA templated mode of telomere replication requires a regulatory mechanism to ensure that telomerase acts at telomeres whose TG tracts are too short, but not at those with long tracts, thus maintaining the protective TG repeat cap at an appropriate average length. The prevailing notion in the field is that telomere length regulation is brought about through a negative feedback mechanism that counts TG repeat-bound protein complexes to generate a signal that regulates telomerase action. This review summarizes experiments leading up to this model and then focuses on more recent experiments, primarily from yeast, that begin to suggest how this counting mechanism might work. The emerging picture is that of a complex interplay between the conventional DNA replication machinery, DNA damage response factors, and a specialized set of proteins that help to recruit and regulate the telomerase enzyme
Analysis of symmetries in models of multi-strain infections
In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases
Yours ever (well, maybe): Studies and signposts in letter writing
Electronic mail and other digital communications technologies seemingly threaten to end the era of handwritten and typed letters, now affectionately seen as part of snail mail. In this essay, I analyze a group of popular and scholarly studies about letter writing-including examples of pundits critiquing the use of e-mail, etiquette manuals advising why the handwritten letter still possesses value, historians and literary scholars studying the role of letters in the past and what it tells us about our present attitudes about digital communications technologies, and futurists predicting how we will function as personal archivists maintaining every document including e-mail. These are useful guideposts for archivists, providing both a sense of the present and the past in the role, value and nature of letters and their successors. They also provide insights into how such documents should be studied, expanding our gaze beyond the particular letters, to the tools used to create them and the traditions dictating their form and function. We also can discern a role for archivists, both for contributing to the literature about documents and in using these studies and commentaries, suggesting not a new disciplinary realm but opportunities for new interdisciplinary work. Examining a documentary form makes us more sensitive to both the innovations and traditions as it shifts from the analog to the digital; we can learn not to be caught up in hysteria or nostalgia about one form over another and archivists can learn about what they might expect in their labors to document society and its institutions. At one time, paper was part of an innovative technology, with roles very similar to the Internet and e-mail today. It may be that the shifts are far less revolutionary than is often assumed. Reading such works also suggests, finally, that archivists ought to rethink how they view their own knowledge and how it is constructed and used. © 2010 Springer Science+Business Media B.V
Initial/boundary-value problems of tumor growth within a host tissue
This paper concerns multiphase models of tumor growth in interaction with a
surrounding tissue, taking into account also the interplay with diffusible
nutrients feeding the cells. Models specialize in nonlinear systems of possibly
degenerate parabolic equations, which include phenomenological terms related to
specific cell functions. The paper discusses general modeling guidelines for
such terms, as well as for initial and boundary conditions, aiming at both
biological consistency and mathematical robustness of the resulting problems.
Particularly, it addresses some qualitative properties such as a priori
nonnegativity, boundedness, and uniqueness of the solutions. Existence of the
solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure
Microbial catabolic activities are naturally selected by metabolic energy harvest rate
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate
The motivational dynamics of arousal and values in promoting sustainable behavior: A cognitive energetics perspective
The effects of symmetry on the dynamics of antigenic variation
In the studies of dynamics of pathogens and their interactions with a host
immune system, an important role is played by the structure of antigenic
variants associated with a pathogen. Using the example of a model of antigenic
variation in malaria, we show how many of the observed dynamical regimes can be
explained in terms of the symmetry of interactions between different antigenic
variants. The results of this analysis are quite generic, and have wider
implications for understanding the dynamics of immune escape of other
parasites, as well as for the dynamics of multi-strain diseases.Comment: 21 pages, 4 figures; J. Math. Biol. (2012), Online Firs
Serotonin regulates prostate growth through androgen receptor modulation
Serotonin regulates prostate growth through androgen receptor modulationAging and testosterone almost inexorably cause benign prostatic hyperplasia (BPH) in Human males. However, etiology of BPH is largely unknown. Serotonin (5-HT) is produced by neuroendocrine prostatic cells and presents in high concentration in normal prostatic transition zone, but its function in prostate physiology is unknown. Previous evidence demonstrated that neuroendocrine cells and 5-HT are decreased in BPH compared to normal prostate. Here, we show that 5-HT is a strong negative regulator of prostate growth. In vitro, 5-HT inhibits rat prostate branching through down-regulation of androgen receptor (AR). This 5-HT's inhibitory mechanism is also present in human cells of normal prostate and BPH, namely in cell lines expressing AR when treated with testosterone. In both models, 5-HT's inhibitory mechanism was replicated by specific agonists of 5-Htr1a and 5-Htr1b. Since peripheral 5-HT production is specifically regulated by tryptophan hydroxylase 1(Tph1), we showed that Tph1 knockout mice present higher prostate mass and up-regulation of AR when compared to wild-type, whereas 5-HT treatment restored the prostate weight and AR levels. As 5-HT is decreased in BPH, we present here evidence that links 5-HT depletion to BPH etiology through modulation of AR. Serotoninergic prostate pathway should be explored as a new therapeutic target for BPH.Projects NORTE-01-0246-FEDER-000012, NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and Bolsa de Investigação GSK Inovação em Urologia 2012info:eu-repo/semantics/publishedVersio
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
