50 research outputs found
Biomethanation potential of biological and other wastes
Anaerobic technology has been traditionally applied for the treatment of carbon rich wastewater and organic residues. Anaerobic processes can be fully integrated in the biobased economy concept for resource recovery. After a brief introduction about applications of anaerobic processes to industrial wastewater treatment, agriculture feedstock and organic fraction of municipal solid waste, the position of anaerobic processes in biorefinery concepts is presented. Integration of anaerobic digestion with these processes can help in the maximisation of the economic value of the biomass used, while reducing the waste streams produced and mitigating greenhouse gases emissions. Besides the integration of biogas in the existing full-scale bioethanol and biodiesel production processes, the potential applications of biogas in the second generation lignocellulosic, algae and syngas-based biorefinery platforms are discussed.(undefined
Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies
Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices
for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid
tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as
compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing
(NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources
including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR)
markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and
Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript
assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes
of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million
reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have
provided >10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including
GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in
chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have
been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data
has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in
groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated
markers along with those already available, molecular breeding programmes have been initiated for
enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to
foliar diseases in groundnut. These trait-associated robust markers along with other genomic resources including
genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legum
Stability of soil plant analytical development (SPAD) chlorophyll meter reading (SCMR) and specific leaf area (SLA) and their association across varying soil moisture stress conditions in groundnut (Arachis hypogaea L.)
Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative
Recommended from our members
North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central-southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability. © 2013 American Meteorological Society
Improving Website Usability and Traffic Based on Users Perceptions and Suggestions––A User-Centered Digital Marketing Approach
Podophyllotoxin content in Podophyllum hexandrum Royle plants of known age of seed origin and grown at a lower altitude
Germination behaviour of seeds of Withania somnifera (L.) Dunal: a high value medicinal plant
Selecting reliable and robust freshwater macroalgae for biomass applications
Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m⁻² day⁻¹), lowest ash content (3–8%), lowest water content (fresh weigh: dry weight ratio of 3.4), highest carbon content (45%) and highest bioenergy potential (higher heating value 20 MJ/kg) compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO2 across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with much potential for biomass applications
