25 research outputs found

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    The clinical significance of incidental intra-abdominal findings on positron emission tomography performed to investigate pulmonary nodules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is a common cause of cancer-related death. Staging typically includes positron emission tomography (PET) scanning, in which<sup>18</sup>F-fluoro-2-dexoy-D-glucose (FDG) is taken up by cells proportional to metabolic activity, thus aiding in differentiating benign and malignant pulmonary nodules. Uptake of FDG can also occur in the abdomen. The clinical significance of incidental intraabdominal FDG uptake in the setting of pulmonary nodules is not well established. Our objective was to report on the clinical significance of incidental intra-abdominal FDG activity in the setting of lung cancer.</p> <p>Methods</p> <p>Fifteen hundred FDG-PET reports for studies performed for lung cancer were retrospectively reviewed for the presence of incidental FDG-positive intraabdominal findings. Patient charts with positive findings were then reviewed and information extracted.</p> <p>Results</p> <p>Twenty-five patients (25/1500) demonstrated incidental intraabdominal FDG uptake thought to be significant (1.7%) with a mean patient age of 71 years. Colonic uptake was most common (n = 17) with 9 (52%) being investigated further. Of these 9 cases, a diagnosis of malignancy was made in 3 patients, pre-malignant adenomas in 2 patients, a benign lipoma in 1 patient and no abnormal findings in the remaining patients. 8 patients were not investigated further (3 diagnosed with metastatic lung cancer and 2 were of advanced age) secondary to poor prognosis.</p> <p>Conclusion</p> <p>Incidental abdominal findings in the colon on FDG-PET scan for work-up of pulmonary nodules need to be further investigated by colonoscopy.</p

    Regional 2-[ 18 F]fluoro-2-deoxy- d -glucose uptake varies in normal lung

    Full text link
    2-[ 18 F]fluoro-2-deoxy- d -glucose positron emission tomography (FDG-PET) is a promising imaging procedure for detecting primary and metastatic cancer in the lungs. We have, however, failed to detect some small tumors in the lower lobes of the lungs. This study aimed to determine whether increase 18 F background activity in the dependent lower lungs is present, which could make lesion detection more difficult. We measured the standardized uptake values (SUVs) for FDG of normal lung remote from the nodular lesion in 16 patients with newly diagnosed untreated lung lesions stronlgy suspected to represent non-small cell lung cancers. In addition, 15 patients with known or suspected primary breast cancers without pulmonary lesions were included as control subjects. After PET transmission images of the thorax were obtained, approximately 370 MBq of FDG was injected intravenously and imaging was immediately begun. Patients were supine throughout the study. SUVs were determined with images obtained 50–70 min after FDG injection. Regions of interest (ROls) of 6×6 pixels were positioned over normal lung in anterior, mid, and posterior portions of upper, middle, and lower lung fields. Thus, as many as 18 ROls were positioned in each patient. The SUVs of the posterior portion were significantly higher than those of the anterior and mid portions in the population of 31 cases ( P <0.001). Also, the mean SUV of the lower lung field was significantly higher than the SUVs of the upper and middle lung fields in this population ( P <0.01). This pattern was seen among the two groups of 16 patients suspected of having lung cancer and 15 control subjects. Background 18 F activity was highest in posterior and lower lung in these patients. The maximum value of mean SUV observed in normal posterior lower lung was 0.804±0.230 (41% greater than the mean SUV in the anterior upper lung), which is in the range of the apparent SUV for a 5-mm lung lesion, with higher SUV, due to recovery coefficient issues. Thus this phenomenon could contribute to occasional false-negative lesions in those areas. Increased blood flow and FDG delivery and also scatter from heart and liver may contribute to the increased lower lung background activity. Regional differences in normal lung FDG uptake are significant and should be considered when interpreting pulmonary PET studies in patients with suspected primary or metastatic lung cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46841/1/259_2004_Article_BF00833385.pd

    Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAF-Mutated Colorectal Cancer

    Get PDF
    PURPOSE: BRAF V600E mutation is seen in 5% to 8% of patients with metastatic colorectal cancer (CRC) and is associated with poor prognosis. Vemurafenib, an oral BRAF V600 inhibitor, has pronounced activity in patients with metastatic melanoma, but its activity in patients with BRAF V600E-positive metastatic CRC was unknown. PATIENTS AND METHODS: In this multi-institutional, open-label study, patients with metastatic CRC with BRAF V600 mutations were recruited to an expansion cohort at the previously determined maximum-tolerated dose of 960 mg orally twice a day. RESULTS: Twenty-one patients were enrolled, of whom 20 had received at least one prior metastatic chemotherapy regimen. Grade 3 toxicities included keratoacanthomas, rash, fatigue, and arthralgia. Of the 21 patients treated, one patient had a confirmed partial response (5%; 95% CI, 1% to 24%) and seven other patients had stable disease by RECIST criteria. Median progression-free survival was 2.1 months. Patterns of concurrent mutations, microsatellite instability status, CpG island methylation status, PTEN loss, EGFR expression, and copy number alterations were not associated with clinical benefit. In contrast to prior expectations, concurrent KRAS and NRAS mutations were detected at low allele frequency in a subset of the patients' tumors (median, 0.21% allele frequency) and were apparent mechanisms of acquired resistance in vemurafenib-sensitive patient-derived xenograft models. CONCLUSION: In marked contrast to the results seen in patients with BRAF V600E-mutant melanoma, single-agent vemurafenib did not show meaningful clinical activity in patients with BRAF V600E mutant CRC. Combination strategies are now under development and may be informed by the presence of intratumor heterogeneity of KRAS and NRAS mutations
    corecore