3,110 research outputs found

    Multi-Objective Big Data Optimization with jMetal and Spark

    Get PDF
    Big Data Optimization is the term used to refer to optimization problems which have to manage very large amounts of data. In this paper, we focus on the parallelization of metaheuristics with the Apache Spark cluster computing system for solving multi-objective Big Data Optimization problems. Our purpose is to study the influence of accessing data stored in the Hadoop File System (HDFS) in each evaluation step of a metaheuristic and to provide a software tool to solve these kinds of problems. This tool combines the jMetal multi-objective optimization framework with Apache Spark. We have carried out experiments to measure the performance of the proposed parallel infrastructure in an environment based on virtual machines in a local cluster comprising up to 100 cores. We obtained interesting results for computational e ort and propose guidelines to face multi-objective Big Data Optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems

    Get PDF
    Background: Mathematical models of dynamical systems facilitate the computation of characteristic properties that are not accessible experimentally. In cell biology, two main properties of interest are (1) the time-period a protein is accessible to other molecules in a certain state - its half-life - and (2) the time it spends when passing through a subsystem - its transit-time. We discuss two approaches to quantify the half-life, present the novel method of in silico labeling, and introduce the label half-life and label transit-time. The developed method has been motivated by laboratory tracer experiments. To investigate the kinetic properties and behavior of a substance of interest, we computationally label this species in order to track it throughout its life cycle. The corresponding mathematical model is extended by an additional set of reactions for the labeled species, avoiding any double-counting within closed circuits, correcting for the influences of upstream fluxes, and taking into account combinatorial multiplicity for complexes or reactions with several reactants or products. A profile likelihood approach is used to estimate confidence intervals on the label half-life and transit-time. Results: Application to the JAK-STAT signaling pathway in Epo-stimulated BaF3-EpoR cells enabled the calculation of the time-dependent label half-life and transit-time of STAT species. The results were robust against parameter uncertainties. Conclusions: Our approach renders possible the estimation of species and label half-lives and transit-times. It is applicable to large non-linear systems and an implementation is provided within the PottersWheel modeling framework (http://www.potterswheel.de)

    Non-chiral current algebras for deformed supergroup WZW models

    Full text link
    We study deformed WZW models on supergroups with vanishing Killing form. The deformation is generated by the isotropic current-current perturbation which is exactly marginal under these assumptions. It breaks half of the global isometries of the original supergroup. The current corresponding to the remaining symmetry is conserved but its components are neither holomorphic nor anti-holomorphic. We obtain the exact two- and three-point functions of this current and a four-point function in the first two leading orders of a 1/k expansion but to all orders in the deformation parameter. We further study the operator product algebra of the currents, the equal time commutators and the quantum equations of motion. The form of the equations of motion suggests the existence of non-local charges which generate a Yangian. Possible applications to string theory on Anti-de Sitter spaces and to condensed matter problems are briefly discussed.Comment: 43 pages, Latex, one eps figure; v.2: minor corrections, a reference adde

    Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Get PDF
    Abstract Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline

    An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect

    Get PDF
    Background: Most randomized controlled trials with a time-to-event outcome are designed and analysed under the proportional hazards assumption, with a target hazard ratio for the treatment effect in mind. However, the hazards may be non-proportional. We address how to design a trial under such conditions, and how to analyse the results. Methods: We propose to extend the usual approach, a logrank test, to also include the Grambsch-Therneau test of proportional hazards. We test the resulting composite null hypothesis using a joint test for the hazard ratio and for time-dependent behaviour of the hazard ratio. We compute the power and sample size for the logrank test under proportional hazards, and from that we compute the power of the joint test. For the estimation of relevant quantities from the trial data, various models could be used; we advocate adopting a pre-specified flexible parametric survival model that supports time-dependent behaviour of the hazard ratio. Results: We present the mathematics for calculating the power and sample size for the joint test. We illustrate the methodology in real data from two randomized trials, one in ovarian cancer and the other in treating cellulitis. We show selected estimates and their uncertainty derived from the advocated flexible parametric model. We demonstrate in a small simulation study that when a treatment effect either increases or decreases over time, the joint test can outperform the logrank test in the presence of both patterns of non-proportional hazards. Conclusions: Those designing and analysing trials in the era of non-proportional hazards need to acknowledge that a more complex type of treatment effect is becoming more common. Our method for the design of the trial retains the tools familiar in the standard methodology based on the logrank test, and extends it to incorporate a joint test of the null hypothesis with power against non-proportional hazards. For the analysis of trial data, we propose the use of a pre-specified flexible parametric model that can represent a time-dependent hazard ratio if one is present

    A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity

    Get PDF
    BACKGROUND: Chronic non-cancer pain is a common problem that is often accompanied by psychiatric comorbidity and disability. The effectiveness of a multi-disciplinary pain management program was tested in a 3 month before and after trial. METHODS: Providers in an academic general medicine clinic referred patients with chronic non-cancer pain for participation in a program that combined the skills of internists, clinical pharmacists, and a psychiatrist. Patients were either receiving opioids or being considered for opioid therapy. The intervention consisted of structured clinical assessments, monthly follow-up, pain contracts, medication titration, and psychiatric consultation. Pain, mood, and function were assessed at baseline and 3 months using the Brief Pain Inventory (BPI), the Center for Epidemiological Studies-Depression Scale scale (CESD) and the Pain Disability Index (PDI). Patients were monitored for substance misuse. RESULTS: Eighty-five patients were enrolled. Mean age was 51 years, 60% were male, 78% were Caucasian, and 93% were receiving opioids. Baseline average pain was 6.5 on an 11 point scale. The average CESD score was 24.0, and the mean PDI score was 47.0. Sixty-three patients (73%) completed 3 month follow-up. Fifteen withdrew from the program after identification of substance misuse. Among those completing 3 month follow-up, the average pain score improved to 5.5 (p = 0.003). The mean PDI score improved to 39.3 (p < 0.001). Mean CESD score was reduced to 18.0 (p < 0.001), and the proportion of depressed patients fell from 79% to 54% (p = 0.003). Substance misuse was identified in 27 patients (32%). CONCLUSIONS: A primary care disease management program improved pain, depression, and disability scores over three months in a cohort of opioid-treated patients with chronic non-cancer pain. Substance misuse and depression were common, and many patients who had substance misuse identified left the program when they were no longer prescribed opioids. Effective care of patients with chronic pain should include rigorous assessment and treatment of these comorbid disorders and intensive efforts to insure follow up

    Do patients prefer optimistic or cautious psychiatrists? An experimental study with new and long-term patients

    Get PDF
    Abstract Background Patients seeking treatment may be assumed to prefer a psychiatrist who suggests a new treatment with confidence and optimism. Yet, this might not apply uniformly to all patients. In this study, we tested the hypothesis that new patients prefer psychiatrists who present treatments optimistically, whilst patients with longer-term experience of mental health care may rather prefer more cautious psychiatrists. Methods In an experimental study, we produced video-clips of four psychiatrists, each suggesting a pharmacological and a psychological treatment once with optimism and once with caution. 100 \u2018new\u2019 patients with less than 3\ua0months experience of mental health care and 100 \u2018long-term\u2019 patients with more than one year of experience were shown a random selection of one video-clip from each psychiatrist, always including an optimistic and a cautious suggestion of each treatment. Patients rated their preferences for psychiatrists on Likert type scales. Differences in subgroups with different age (18\u201340 vs. 41\u201365 years), gender, school leaving age (\u226416 vs. >16\ua0years), and diagnosis (ICD 10\ua0F2 vs. others) were explored. Results New patients preferred more optimistic treatment suggestions, whilst there was no preference among long-term patients. The interaction effect between preference for treatment presentations and experience of patients was significant (interaction p -value\u2009=\u20090.003). Findings in subgroups were similar. Conclusion In line with the hypothesis, psychiatrists should suggest treatments with optimism to patients with little experience of mental health care. However, this rule does not apply to longer-term patients, who may have experienced treatment failures in the past
    corecore