286 research outputs found

    Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions

    Get PDF
    Cubic couplings between a complex scalar field and a tower of symmetric tensor gauge fields of all ranks are investigated on any constant curvature spacetime of dimension d>2. Following Noether's method, the gauge fields interact with the scalar field via minimal coupling to the conserved currents. A symmetric conserved current, bilinear in the scalar field and containing up to r derivatives, is obtained for any rank r from its flat spacetime counterpart in dimension d+1, via a radial dimensional reduction valid precisely for the mass-square domain of unitarity in (anti) de Sitter spacetime of dimension d. The infinite collection of conserved currents and cubic vertices are summarized in a compact form by making use of generating functions and of the Weyl/Wigner quantization on constant curvature spaces.Comment: 35+1 pages, v2: two references added, typos corrected, enlarged discussions in Subsection 5.2 and in Conclusion, to appear in JHE

    Effective action in a higher-spin background

    Full text link
    We consider a free massless scalar field coupled to an infinite tower of background higher-spin gauge fields via minimal coupling to the traceless conserved currents. The set of Abelian gauge transformations is deformed to the non-Abelian group of unitary operators acting on the scalar field. The gauge invariant effective action is computed perturbatively in the external fields. The structure of the various (divergent or finite) terms is determined. In particular, the quadratic part of the logarithmically divergent (or of the finite) term is expressed in terms of curvatures and related to conformal higher-spin gravity. The generalized higher-spin Weyl anomalies are also determined. The relation with the theory of interacting higher-spin gauge fields on anti de Sitter spacetime via the holographic correspondence is discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Patterning Bacterial Communities on Epithelial Cells

    Get PDF
    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibrio bacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactionsopen3

    Opposing effects of final population density and stress on Escherichia coli mutation rate

    Get PDF
    Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 × 10  cells ml ). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution

    The Crystal Structure of the Escherichia coli Autoinducer-2 Processing Protein LsrF

    Get PDF
    Many bacteria produce and respond to the quorum sensing signal autoinducer-2 (AI-2). Escherichia coli and Salmonella typhimurium are among the species with the lsr operon, an operon containing AI-2 transport and processing genes that are up regulated in response to AI-2. One of the Lsr proteins, LsrF, has been implicated in processing the phosphorylated form of AI-2. Here, we present the structure of LsrF, unliganded and in complex with two phospho-AI-2 analogues, ribose-5-phosphate and ribulose-5-phosphate. The crystal structure shows that LsrF is a decamer of (αβ)8-barrels that exhibit a previously unseen N-terminal domain swap and have high structural homology with aldolases that process phosphorylated sugars. Ligand binding sites and key catalytic residues are structurally conserved, strongly implicating LsrF as a class I aldolase

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Communication in bacteria: an ecological and evolutionary perspective

    Get PDF
    Individual bacteria can alter their behaviour through chemical interactions between organisms in microbial communities - this is generally referred to as quorum sensing. Frequently, these interactions are interpreted in terms of communication to mediate coordinated, multicellular behaviour. We show that the nature of interactions through quorum-sensing chemicals does not simply involve cooperative signals, but entails other interactions such as cues and chemical manipulations. These signals might have a role in conflicts within and between species. The nature of the chemical interaction is important to take into account when studying why and how bacteria react to the chemical substances that are produced by other bacteria

    The immunology and genetics of resistance of sheep to Teladorsagia circumcincta

    Get PDF
    Teladorsagia circumcincta is one of the most economically important gastrointestinal nematode parasites of sheep in cool temperate regions, to which sheep show genetically-varying resistance to infection. This is a very common parasite and viable sheep production requires the extensive use of anthelmintic drugs. However, the emergence of drug-resistant parasites has stimulated the search for alternative control strategies to curb production losses. Lambs become infected soon after weaning and begin to control parasite burden within 8-10 weeks of continual infection. This control is an acquired characteristic mediated by the development of parasite-specific antibodies. This paper describes the immunology associated with resistance and susceptibility, focussing on differential T cell activation that regulates the production of specific effector mechanisms. It continues by summarizing the methods used to identify genes that could be exploited as molecular markers of selection for resistance. In particular it focusses on the link between understanding the molecular immunology of infection and the identification of candidate genes for selection

    Edible bio-based nanostructures: delivery, absorption and potential toxicity

    Get PDF
    The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged
    corecore