52 research outputs found
Reduced Amygdala and Ventral Striatal Activity to Happy Faces in PTSD Is Associated with Emotional Numbing
There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1) individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2) that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral) faces in ventral striatum and and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing
Recommended from our members
Dopamine Increases a Value-Independent Gambling Propensity
Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine’s role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options—a finding with implications for understanding a range of reward-related psychopathologies including addiction
Recommended from our members
Neural processes mediating contextual influences on human choice behaviour
Contextual influences on choice are ubiquitous in ecological settings. Current evidence suggests that subjective values are normalized with respect to the distribution of potentially available rewards. However, how this context-sensitivity is realised in the brain remains unknown. To address this, here we examine functional magnetic resonance imaging (fMRI) data during performance of a gambling task where blocks comprise values drawn from one of two different, but partially overlapping, reward distributions or contexts. At the beginning of each block (when information about context is provided), hippocampus is activated and this response is enhanced when contextual influence on choice increases. In addition, response to value in ventral tegmental area/substantia nigra (VTA/SN) shows context-sensitivity, an effect enhanced with an increased contextual influence on choice. Finally, greater response in hippocampus at block start is associated with enhanced context sensitivity in VTA/SN. These findings suggest that context-sensitive choice is driven by a brain circuit involving hippocampus and dopaminergic midbrain
Dorsal Striatum and Its Limbic Connectivity Mediate Abnormal Anticipatory Reward Processing in Obesity
Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity
Dorsal Striatum and Its Limbic Connectivity Mediate Abnormal Anticipatory Reward Processing in Obesity
Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity
Led into Temptation? Rewarding Brand Logos Bias the Neural Encoding of Incidental Economic Decisions
Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness
From consent to institutions: designing adaptive governance for genomic biobanks.
Biobanks are increasingly hailed as powerful tools to advance health research. The social and ethical challenges associated with the implementation and operation of biobanks are equally well-documented. One of the proposed solutions to these challenges involves trading off a reduction in the specificity of informed consent protocols with an increased emphasis on governance. However, little work has gone into formulating what such governance might look like. In this paper, we suggest four general principles that should inform biobank governance and illustrate the enactment of these principles in a proposed governance model for a particular population-scale biobank, the British Columbia (BC) Generations Project. We begin by outlining four principles that we see as necessary for informing sustainable and effective governance of biobanks: (1) recognition of research participants and publics as a collective body, (2) trustworthiness, (3) adaptive management, and (4) fit between the nature of a particular biobank and the specific structural elements of governance adopted. Using the BC Generations Project as a case study, we then offer as a working model for further discussion the outlines of a proposed governance structure enacting these principles. Ultimately, our goal is to design an adaptive governance approach that can protect participant interests as well as promote effective translational health sciences
Germinal center dendritic cells express more ICAM-1 than extrafollicular dendritic cells and ICAM-1/LFA-1 interactions are involved in the capacity of dendritic cells to induce PBMCs proliferation
Germinal center dendritic cells (GCDCs) have been identified as CD11c(+) CD4(+) CD3(-) cells located in GCs with them ability of inducing marked proliferation of allogenic T cells. Using immunofluorescence techniques, we have observed that this CD11c(+) CD4(+) CD3(-) immunophenotype identified GCDCs but also a subset of extrafollicular DCs. By flow cytometry, we were able to discriminate the GCDCs (CD11c(high) CD4(high) lin(-)) from the other tonsil DCs. By immunofluorescence and flow cytometry, we found that dendritic cells of germinal centers express more intracellular adhesion molecule-1 (ICAM-1) (CD54) than extrafollicular dendritic cells. Proliferation of peripheral blood mononuclear cells (PBMCs) induced by coculture with purified CD11c(+) CD4(+) CD3(-) DCs was reduced by addition of blocking anti-CD54 antibodies. In summary, distinct levels of ICAM-1 expression allow the distinction between GCDCs and extrafollicular DCs, and cellular interactions mediated by CD54 are likely to play a role in the capacity of GCDC to stimulate allogenic PBMC proliferation.Peer reviewe
Germinal Center Dendritic Cells Express More ICAM-1 Than Extrafollicular Dendritic Cells and ICAM-1/LFA-1 Interactions are Involved in the Capacity of Dendritic Cells to Induce PBMCs Proliferation
Engaging the Canadian public on reimbursement decision-making for drugs for rare diseases: a national online survey
- …
