75 research outputs found
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a midsized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health
Human epididymis protein 4 reference limits and natural variation in a Nordic reference population
The objectives of this study are to establish reference limits for human epididymis protein 4, HE4, and investigate factors influencing HE4 levels in healthy subjects. HE4 was measured in 1,591 samples from the Nordic Reference Interval Project Bio-bank and Database biobank, using the manual HE4 EIA (Fujirebio) for 802 samples and the Architect HE4 (Abbott) for 792 samples. Reference limits were calculated using the statistical software R. The influence of donor characteristics such as age, sex, body mass index, smoking habits, and creatinine on HE4 levels was investigated using a multivariate model. The study showed that age is the main determinant of HE4 in healthy subjects, corresponding to 2% higher HE4 levels at 30 years (compared to 20 years), 9% at 40 years, 20% at 50 years, 37% at 60 years, 63% at 70 years, and 101% at 80 years. HE4 levels are 29% higher in smokers than in nonsmokers. In conclusion, HE4 levels in healthy subjects are associated with age and smoking status. Age-dependent reference limits are suggested
Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
62: AUTOMATED DETECTION OF WOUND AREA IN A STENTED EXCISIONAL MODEL OF MURINE WOUND HEALING
222C: A NOVEL OXYGEN-BINDING DELIVERY PROTEIN ENHANCES LOCAL OXYGENATION OF ISCHEMIC SKIN
163: FIBROBLAST-SPECIFIC FOCAL ADHESION KINASE LINKS MECHANICAL FORCE WITH SCAR FORMATION BY REGULATING FIBROPROLIFERATIVE AND INFLAMMATORY PATHWAYS POST-INJURY
100A: SINGLE CELL TRANSCRIPTIONAL ANALYSIS DEFINES MULTIPLE HETEROGENEOUS SUBPOPULATIONS WITHIN HUMAN ADIPOSE-DERIVED STROMAL CELLS
127: DELIVERY OF MESENCHYMAL STEM CELLS IN A BIOMIMETIC HYDROGEL ENHANCES STEM CELL ENGRAFTMENT AND ACCELERATES WOUND HEALING
140: UTILIZATION OF EXPLANTABLE MICROVASCULAR NETWORKS FROM ADIPOSE TISSUE FOR ORGAN-LEVEL TISSUE ENGINEERING
- …
