13 research outputs found
Recommended from our members
Sit still and pay attention: Using the Wii Balance-Board to detect lapses in concentration in children during psychophysical testing.
During psychophysical testing, a loss of concentration can cause observers to answer incorrectly, even when the stimulus is clearly perceptible. Such lapses limit the accuracy and speed of many psychophysical measurements. This study evaluates an automated technique for detecting lapses based on body movement (postural instability). Thirty-five children (8-11 years of age) and 34 adults performed a typical psychophysical task (orientation discrimination) while seated on a Wii Fit Balance Board: a gaming device that measures center of pressure (CoP). Incorrect responses on suprathreshold catch trials provided the "reference standard" measure of when lapses in concentration occurred. Children exhibited significantly greater variability in CoP on lapse trials, indicating that postural instability provides a feasible, real-time index of concentration. Limitations and potential applications of this method are discussed
Δ9-Tetrahydrocannabinol (THC) impairs visual working memory performance: a randomized crossover trial
With the increasing prevalence of legal cannabis use and availability, there is an urgent need to identify cognitive impairments related to its use. It is widely believed that cannabis, or its main psychoactive component Δ9-tetrahydrocannabinol (THC), impairs working memory, i.e., the ability to temporarily hold information in mind. However, our review of the literature yielded surprisingly little empirical support for an effect of THC or cannabis on working memory. We thus conducted a study with three main goals: (1) quantify the effect of THC on visual working memory in a well-powered sample, (2) test the potential role of cognitive effects (mind wandering and metacognition) in disrupting working memory, and (3) demonstrate how insufficient sample size and task duration reduce the likelihood of detecting a drug effect. We conducted two double-blind, randomized crossover experiments in which healthy adults (N = 23, 23) performed a reliable and validated visual working memory task (the "Discrete Whole Report task", 90 trials) after administration of THC (7.5 and/or 15 mg oral) or placebo. We also assessed self-reported "mind wandering" (Exp 1) and metacognitive accuracy about ongoing task performance (Exp 2). THC impaired working memory performance (d = 0.65), increased mind wandering (Exp 1), and decreased metacognitive accuracy about task performance (Exp 2). Thus, our findings indicate that THC does impair visual working memory, and that this impairment may be related to both increased mind wandering and decreased monitoring of task performance. Finally, we used a down-sampling procedure to illustrate the effects of task length and sample size on power to detect the acute effect of THC on working memory
Electrophysiological correlates of the flexible allocation of visual working memory resources
Recommended from our members
Error-correcting dynamics in visual working memory
Working memory is critical to cognition, decoupling behavior from the immediate world. Yet, it is imperfect; internal noise introduces errors into memory representations. Such errors have been shown to accumulate over time and increase with the number of items simultaneously held in working memory. Here, we show that discrete attractor dynamics mitigate the impact of noise on working memory. These dynamics pull memories towards a few stable representations in mnemonic space, inducing a bias in memory representations but reducing the effect of random diffusion. Model-based and model-free analyses of human and monkey behavior show that discrete attractor dynamics account for the distribution, bias, and precision of working memory reports. Furthermore, attractor dynamics are adaptive. They increase in strength as noise increases with memory load and experiments in humans show these dynamics adapt to the statistics of the environment, such that memories drift towards contextually-predicted values. Together, our results suggest attractor dynamics mitigate errors in working memory by counteracting noise and integrating contextual information into memories
Mindfulness Improves Attention Resource Allocation During Response Inhibition in Older Adults
Protecting visual short-term memory during maintenance: Attentional modulation of target and distractor representations
In the presence of distraction, attentional filtering is a key predictor of efficient information storage in visual short-term memory (VSTM). Yet, the role of attention in distractor filtering, and the extent to which attentional filtering continues to protect information during post-perceptual stages of VSTM, remains largely unknown. In the current study, we investigated the role of spatial attention in distractor filtering during VSTM encoding and maintenance. Participants performed a change detection task with varying distractor load. Attentional deployment to target and distractor locations was tracked continuously by means of Steady-State Visual Evoked Potentials (SSVEPs). Analyses revealed that attention strongly modulated the amplitude of the second harmonic SSVEP response, with larger amplitudes at target compared to distractor locations. These attentional modulations commenced during encoding, and remained present during maintenance. Furthermore, the amount of attention paid to distractor locations was directly related to behavioral distractor costs: Individuals who paid more attention to target compared to distractor locations during VSTM maintenance generally suffered less from the presence of distractors. Together, these findings support an important role of spatial attention in distractor filtering at multiple stages of VSTM, and highlight the usefulness of SSVEPs in continuously tracking attention to multiple locations during VSTM
