49 research outputs found
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Orbital excitation blockade and algorithmic cooling in quantum gases
Interaction blockade occurs when strong interactions in a confined few-body
system prevent a particle from occupying an otherwise accessible quantum state.
Blockade phenomena reveal the underlying granular nature of quantum systems and
allow the detection and manipulation of the constituent particles, whether they
are electrons, spins, atoms, or photons. The diverse applications range from
single-electron transistors based on electronic Coulomb blockade to quantum
logic gates in Rydberg atoms. We have observed a new kind of interaction
blockade in transferring ultracold atoms between orbitals in an optical
lattice. In this system, atoms on the same lattice site undergo coherent
collisions described by a contact interaction whose strength depends strongly
on the orbital wavefunctions of the atoms. We induce coherent orbital
excitations by modulating the lattice depth and observe a staircase-type
excitation behavior as we cross the interaction-split resonances by tuning the
modulation frequency. As an application of orbital excitation blockade (OEB),
we demonstrate a novel algorithmic route for cooling quantum gases. Our
realization of algorithmic cooling utilizes a sequence of reversible OEB-based
quantum operations that isolate the entropy in one part of the system, followed
by an irreversible step that removes the entropy from the gas. This work opens
the door to cooling quantum gases down to ultralow entropies, with implications
for developing a microscopic understanding of strongly correlated electron
systems that can be simulated in optical lattices. In addition, the close
analogy between OEB and dipole blockade in Rydberg atoms provides a roadmap for
the implementation of two-qubit gates in a quantum computing architecture with
natural scalability.Comment: 6 pages, 4 figure
Caenorhabditis elegans Battling Starvation Stress: Low Levels of Ethanol Prolong Lifespan in L1 Larvae
The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%); higher concentrations to 68 mM (0.4%) did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response
Mechanisms Underlying Hypoxia Tolerance in Drosophila melanogaster: hairy as a Metabolic Switch
Hypoxia-induced cell injury has been related to multiple pathological conditions. In order to render hypoxia-sensitive cells and tissues resistant to low O2 environment, in this current study, we used Drosophila melanogaster as a model to dissect the mechanisms underlying hypoxia-tolerance. A D. melanogaster strain that lives perpetually in an extremely low-oxygen environment (4% O2, an oxygen level that is equivalent to that over about 4,000 m above Mt. Everest) was generated through laboratory selection pressure using a continuing reduction of O2 over many generations. This phenotype is genetically stable since selected flies, after several generations in room air, survive at this low O2 level. Gene expression profiling showed striking differences between tolerant and naïve flies, in larvae and adults, both quantitatively and qualitatively. Up-regulated genes in the tolerant flies included signal transduction pathways (e.g., Notch and Toll/Imd pathways), but metabolic genes were remarkably down-regulated in the larvae. Furthermore, a different allelic frequency and enzymatic activity of the triose phosphate isomerase (TPI) was present in the tolerant versus naïve flies. The transcriptional suppressor, hairy, was up-regulated in the microarrays and its binding elements were present in the regulatory region of the specifically down-regulated metabolic genes but not others, and mutations in hairy significantly reduced hypoxia tolerance. We conclude that, the hypoxia-selected flies: (a) altered their gene expression and genetic code, and (b) coordinated their metabolic suppression, especially during development, with hairy acting as a metabolic switch, thus playing a crucial role in hypoxia-tolerance
Strongyloides stercoralis age-1: A Potential Regulator of Infective Larval Development in a Parasitic Nematode
Infective third-stage larvae (L3i) of the human parasite Strongyloides stercoralis share many morphological, developmental, and behavioral attributes with Caenorhabditis elegans dauer larvae. The ‘dauer hypothesis’ predicts that the same molecular genetic mechanisms control both dauer larval development in C. elegans and L3i morphogenesis in S. stercoralis. In C. elegans, the phosphatidylinositol-3 (PI3) kinase catalytic subunit AGE-1 functions in the insulin/IGF-1 signaling (IIS) pathway to regulate formation of dauer larvae. Here we identify and characterize Ss-age-1, the S. stercoralis homolog of the gene encoding C. elegans AGE-1. Our analysis of the Ss-age-1 genomic region revealed three exons encoding a predicted protein of 1,209 amino acids, which clustered with C. elegans AGE-1 in phylogenetic analysis. We examined temporal patterns of expression in the S. stercoralis life cycle by reverse transcription quantitative PCR and observed low levels of Ss-age-1 transcripts in all stages. To compare anatomical patterns of expression between the two species, we used Ss-age-1 or Ce-age-1 promoter::enhanced green fluorescent protein reporter constructs expressed in transgenic animals for each species. We observed conservation of expression in amphidial neurons, which play a critical role in developmental regulation of both dauer larvae and L3i. Application of the PI3 kinase inhibitor LY294002 suppressed L3i in vitro activation in a dose-dependent fashion, with 100 µM resulting in a 90% decrease (odds ratio: 0.10, 95% confidence interval: 0.08–0.13) in the odds of resumption of feeding for treated L3i in comparison to the control. Together, these data support the hypothesis that Ss-age-1 regulates the development of S. stercoralis L3i via an IIS pathway in a manner similar to that observed in C. elegans dauer larvae. Understanding the mechanisms by which infective larvae are formed and activated may lead to novel control measures and treatments for strongyloidiasis and other soil-transmitted helminthiases
Risk factors for respiratory complications after adenotonsillectomy in children with obstructive sleep apnea
Identificar fatores de risco para complicações respiratórias após adenotonsilectomia em crianças ≤ 12 anos com apneia obstrutiva do sono encaminhadas à UTI pediátrica (UTIP). Estudo de coorte histórica com corte transversal que analisou 53 crianças após adenotonsilectomia que preencheram os critérios pré-estabelecidos para encaminhamento à UTIP em um hospital escola de nível terciário. Foram utilizados o teste t de Student, o teste de Mann-Whitney e o teste do qui-quadrado para identificar os fatores de risco. Das 805 crianças submetidas à adenotonsilectomia entre janeiro de 2006 e dezembro de 2012 no hospital escola, 53 foram encaminhadas à UTIP. Vinte e uma crianças (2,6% do total de submetidas à adenotonsilectomia e 39,6% das que foram encaminhadas à UTIP) apresentaram complicações respiratórias, sendo 12 do gênero masculino e a idade média de 5,3 ± 2,6 anos. Maior índice de apneia-hipopneia (IAH; p = 0,0269), maior índice de dessaturação de oxigênio (IDO; p = 0,0082), baixo nadir da SpO2 (p = 0,0055), maior tempo de intubação orotraqueal (p = 0,0011) e rinopatia (p = 0,0426) foram preditores independentes de complicações respiratórias. Foram observadas complicações respiratórias menores (SpO2 entre 90-80%) e maiores (SpO2 ≤ 80%, laringoespasmos, broncoespasmos, edema agudo de pulmão, pneumonia e apneia). Em crianças de até 12 anos e com apneia obstrutiva do sono, aquelas que têm maior IAH, maior IDO, menor nadir da SpO2 e/ou rinopatia são mais predispostas a desenvolver complicações respiratórias após adenotonsilectomia do que aquelas sem essas características.Faculdade de Medicina da Universidade de São Paulo - FMUSP - São Paulo (SP) BrasilFaculdade de Medicina de Botucatu, Universidade Estadual Paulista, Bases Gerais da Cirurgia- FMB-UNESP - Botucatu (SP) Brasi
Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More.
The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.journal article2020importe
Dynamic MicroRNA expression programs during cardiac differentiation of human embryonic stem cells: Role for miR-499
Comment in Circ Cardiovasc Genet. 2011 Feb 1;4(1):e3; author reply e4.Background-MicroRNAs (miRNAs) are a newly discovered endogenous class of small, noncoding RNAs that play important posttranscriptional regulatory roles by targeting messenger RNAs for cleavage or translational repression. Human embryonic stem cells are known to express miRNAs that are often undetectable in adult organs, and a growing body of evidence has implicated miRNAs as important arbiters of heart development and disease. Methods and Results-To better understand the transition between the human embryonic and cardiac "miRNA-omes," we report here the first miRNA profiling study of cardiomyocytes derived from human embryonic stem cells. Analyzing 711 unique miRNAs, we have identified several interesting miRNAs, including miR-1, -133, and -208, that have been previously reported to be involved in cardiac development and disease and that show surprising patterns of expression across our samples. We also identified novel miRNAs, such as miR-499, that are strongly associated with cardiac differentiation and that share many predicted targets with miR-208. Overexpression of miR-499 and -1 resulted in upregulation of important cardiac myosin heavy-chain genes in embryoid bodies; miR-499 overexpression also caused upregulation of the cardiac transcription factor MEF2C. Conclusions-Taken together, our data give significant insight into the regulatory networks that govern human embryonic stem cell differentiation and highlight the ability of miRNAs to perturb, and even control, the genes that are involved in cardiac specification of human embryonic stem cells. © 2010 American Heart Association, Inc.link_to_OA_fulltex
