488 research outputs found
Costs of Testing for Ocular Chlamydia trachomatis Infection Compared to Mass Drug Administration for Trachoma in The Gambia: Application of Results from the PRET Study
Background
Mass drug administration (MDA) treatment of active trachoma with antibiotic is recommended to be initiated in any district where the prevalence of trachoma inflammation, follicular (TF) is ≥10% in children aged 1–9 years, and then to continue for at least three annual rounds before resurvey. In The Gambia the PRET study found that discontinuing MDA based on testing a sample of children for ocular Chlamydia trachomatis(Ct) infection after one MDA round had similar effects to continuing MDA for three rounds. Moreover, one round of MDA reduced disease below the 5% TF threshold. We compared the costs of examining a sample of children for TF, and of testing them for Ct, with those of MDA rounds.
Methods
The implementation unit in PRET The Gambia was a census enumeration area (EA) of 600–800 people. Personnel, fuel, equipment, consumables, data entry and supervision costs were collected for census and treatment of a sample of EAs and for the examination, sampling and testing for Ct infection of 100 individuals within them. Programme costs and resource savings from testing and treatment strategies were inferred for the 102 EAs in the study area, and compared.
Results
Census costs were 108.79. MDA with donated azithromycin cost 796.90 per EA, with Ct testing kits costing 1.38 per result. However stopping or deciding not to initiate treatment in the study area based on testing a sample of EAs for Ct infection (or examining children in a sample of EAs) creates savings relative to further unnecessary treatments.
Conclusion
Resources may be saved by using tests for chlamydial infection or clinical examination to determine that initial or subsequent rounds of MDA for trachoma are unnecessary
Leave entitlements, time off work and the household financial impacts of quarantine compliance during an H1N1 outbreak
The Australian state of Victoria, with 5.2 million residents, enforced home quarantine during a H1N1
pandemic in 2009. The strategy was targeted at school children. The objective of this study was to investigate the
extent to which parents’ access to paid sick leave or paid carer’s leave was associated with (a) time taken off work
to care for quarantined children, (b) household finances, and (c) compliance with quarantine recommendations.This project was funded by two NHMRC Strategic Awards: “Call for research
on H1N1 influenza 09 to inform public policy” (#628962) and “Changing
patterns of work: Impacts on physical and mental health and the mediating
role of resilience and social capital” (#375196). JM is supported by a NHMRC
Career Development Award; DS is funded by an ARC Federation Fellowship
CHARGE syndrome
CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness). In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies) and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot) occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ) ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness). Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family) are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child develops, challenging behaviors become more common and require adaptation of educational and therapeutic services, including behavioral and pharmacological interventions
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Open Source PaperThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article
CHARGE syndrome: Genetic aspects and dental challenges, a review and case presentation
CHARGE syndrome (CS) is a rare genetic condition (OMIM #214800). The condition has a variable
phenotypic expression. Historically, the diagnosis of CHARGE syndrome was based on the presence of specific
clinical criteria. The genetic aetiology of CS has since been elucidated and attributed to pathogenic variation in the
CHD7 gene (OMIM 608892) at chromosome locus 8q12
Species-specified VOC emissions derived from a gridded study in the Pearl River Delta, China
This study provides a top-down approach to establish an emission inventory of volatile organic compounds (VOC) based on ambient measurements, by combining the box model and positive matrix factorization (PMF) model. Species-specified VOC emissions, source contributions, and spatial distributions are determined based on regional-scale gridded measurements between September 2008 to December 2009 in the Pearl River Delta (PRD), China. The most prevalent anthropogenic species in the PRD was toluene estimated by the box model to be annual emissions of 167.8 ± 100.5 Gg, followed by m,p-xylene (68.0 ± 45.0 Gg), i-pentane (49.2 ± 40.0 Gg), ethene (47.6 ± 27.6 Gg), n-butane (47.5 ± 40.7 Gg), and benzene (46.8 ± 29.0 Gg). Alkanes such as propane, i-butane, and n-pentane were 2–8 times higher in box model than emission inventories (EI). Species with fewer emissions were highly variable between EI and box model results. Hotspots of VOC emissions were identified in southwestern PRD and port areas, which were not reflected by bottom-up EI. This suggests more research is needed for VOC emissions in the EI, especially for fuel evaporation, industrial operations and marine vessels. The species-specified top-down method can help improve the quality of these emission inventories
Early influences on cardiovascular and renal development
The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh
A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.
This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
- …
