8 research outputs found
Learning genetic epistasis using Bayesian network scoring criteria
<p>Abstract</p> <p>Background</p> <p>Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is <it>Multifactor Dimensionality Reduction </it>(MDR). Jiang et al. created a combinatorial epistasis learning method called <it>BNMBL </it>to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs. Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions even better than BNMBL.</p> <p>Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them in this domain until we determine which scoring criteria work best or even well when we try learning the correct model without knowledge of the number of SNPs in that model.</p> <p>Results</p> <p>We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real Alzheimer's GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a hyperparameter called α performed best. This score performed better than other BN scoring criteria and MDR at <it>recall </it>using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at substantiating previous results using the real Alzheimer's data set.</p> <p>Conclusions</p> <p>We conclude that representing epistatic interactions using BN models and scoring them using a BN scoring criterion holds promise for identifying epistatic genetic variants in data. In particular, the Bayesian scoring criterion with large values of a hyperparameter α appears more promising than a number of alternatives.</p
Inferring causation from time series in Earth system sciences
The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers
Collaborative-group testing improves learning and knowledge retention of human physiology topics in second-year medical students
Weimar Germany: The first open access order that failed?
The Weimar Republic is analysed within the framework of limited and open access orders. Germany had developed into a mature limited access order before World War I, with rule of law and open economic access but only limited access to politics. After the war, Germany developed toward an open access order; this process was, however, not sustainable. Two interpretations are discussed, which both pose a challenge to the limited access-open access framework: (1.) Weimar Germany was the first open access order that failed; (2.) sufficiency conditions of the sustainability of open access are not yet included in the framework. It is proposed that sustainable open access orders do not only depend on open political and economic access and on the state monopolising violence capacities (coercive power); government and the political institutions must also have the capacity to efficiently create legitimacy via coordination capabilities
