472 research outputs found

    Investigation of Solvent Type and Salt Addition in High Transference Number Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries

    Get PDF
    High Li+ transference number electrolytes have attracted recent interest as a means to improve the energy density and rate capabilities of current lithium ion batteries. Here the viscosity and transport properties of a sulfonated polysulfone/poly(ethylene glycol) copolymer that displays both high transference number and high conductivity when dissolved in dimethyl sulfoxide (DMSO) are investigated for the first time in a battery-relevant solvent of nearly equivalent dielectric constant: mixed ethylene carbonate (EC)/dimethyl carbonate (DMC). The addition of a binary salt to each solution is investigated as a means to improve conductivity, and the diffusion coefficient of each species is tracked by pulse field gradient nuclear magnetic resonance (PFG-NMR). Through the 7Li NMR peak width and quantum chemistry calculations of the dissociation constant, it is shown that although the two solvent systems have nearly equivalent dielectric constants, the conductivity and transference number of the EC/DMC solutions are significantly lower as a result of poor dissociation of the sulfonate group on the polymer backbone. These results are the first study of polyelectrolyte properties in a battery-relevant solvent and clearly demonstrate the need to consider solvent properties other than the dielectric constant in the design of these electrolytes

    Superluminal motion of a relativistic jet in the neutron star merger GW170817

    Get PDF
    The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual rise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.Comment: 42 pages, 4 figures (main text), 2 figures (supplementary text), 2 tables. Referee and editor comments incorporate

    Enabling New ALMA Science with Improved Support for Time-Domain Observations

    Get PDF
    While the Atacama Large Millimeter/submillimeter Array (ALMA) is a uniquely powerful telescope, its impact in certain fields of astrophysics has been limited by observatory policies rather than the telescope's innate technical capabilities. In particular, several observatory policies present challenges for observations of variable, mobile, and/or transient sources --- collectively referred to here as "time-domain" observations. In this whitepaper we identify some of these policies, describe the scientific applications they impair, and suggest changes that would increase ALMA's science impact in Cycle 6 and beyond. Parties interested in time-domain science with ALMA are encouraged to join the ALMA Time-domain Special Interest Group (ATSIG) by signing up for the ATSIG mailing list at https://groups.google.com/group/alma-td-sig

    Enabling New ALMA Science with Improved Support for Time-Domain Observations

    Get PDF
    While the Atacama Large Millimeter/submillimeter Array (ALMA) is a uniquely powerful telescope, its impact in certain fields of astrophysics has been limited by observatory policies rather than the telescope's innate technical capabilities. In particular, several observatory policies present challenges for observations of variable, mobile, and/or transient sources --- collectively referred to here as "time-domain" observations. In this whitepaper we identify some of these policies, describe the scientific applications they impair, and suggest changes that would increase ALMA's science impact in Cycle 6 and beyond. Parties interested in time-domain science with ALMA are encouraged to join the ALMA Time-domain Special Interest Group (ATSIG) by signing up for the ATSIG mailing list at https://groups.google.com/group/alma-td-sig

    Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes

    Get PDF
    Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.This work was funded by the European Research Council (ERC) grant to S.K.S., EMATTER (# 280078). K.D.F. acknowledges support from the Winston Churchill Foundation of the United States. T.W. thanks the China Scholarship Council (CSC) for funding and the Engineering and Physical Sciences Research Council of the U.K. (EPSRC) Centre for Doctoral Training in Sensor Technologies and Applications (Grant Number: EP/L015889/1) for support

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Discovery of the Optical Afterglow and Host Galaxy of Short GRB 181123B at z = 1.754: Implications for Delay Time Distributions

    Get PDF
    We present the discovery of the optical afterglow and host galaxy of the Swift short-duration gamma-ray burst (SGRB) GRB 181123B. Observations with Gemini-North starting ≈9.1 hr after the burst reveal a faint optical afterglow with i ≈ 25.1 mag at an angular offset of 0farcs59 ± 0farcs16 from its host galaxy. Using grizYJHK observations, we measure a photometric redshift of the host galaxy of z=1.770.17+0.30z={1.77}_{-0.17}^{+0.30}. From a combination of Gemini and Keck spectroscopy of the host galaxy spanning 4500–18000 Å, we detect a single emission line at 13390 Å, inferred as Hβ at z = 1.754 ± 0.001 and corroborating the photometric redshift. The host galaxy properties of GRB 181123B are typical of those of other SGRB hosts, with an inferred stellar mass of ≈9.1 × 109 M ⊙, a mass-weighted age of ≈0.9 Gyr, and an optical luminosity of ≈0.9L*. At z = 1.754, GRB 181123B is the most distant secure SGRB with an optical afterglow detection and one of only three at z > 1.5. Motivated by a growing number of high-z SGRBs, we explore the effects of a missing z > 1.5 SGRB population among the current Swift sample on delay time distribution (DTD) models. We find that lognormal models with mean delay times of ≈4–6 Gyr are consistent with the observed distribution but can be ruled out to 95% confidence, with an additional ≈one to five Swift SGRBs recovered at z > 1.5. In contrast, power-law models with ∝t −1 are consistent with the redshift distribution and can accommodate up to ≈30 SGRBs at these redshifts. Under this model, we predict that ≈1/3 of the current Swift population of SGRBs is at z > 1. The future discovery or recovery of existing high-z SGRBs will provide significant discriminating power on their DTDs and thus their formation channels
    corecore