566 research outputs found
Coupling molecular spin states by photon-assisted tunneling
Artificial molecules containing just one or two electrons provide a powerful
platform for studies of orbital and spin quantum dynamics in nanoscale devices.
A well-known example of these dynamics is tunneling of electrons between two
coupled quantum dots triggered by microwave irradiation. So far, these
tunneling processes have been treated as electric dipole-allowed
spin-conserving events. Here we report that microwaves can also excite
tunneling transitions between states with different spin. In this work, the
dominant mechanism responsible for violation of spin conservation is the
spin-orbit interaction. These transitions make it possible to perform detailed
microwave spectroscopy of the molecular spin states of an artificial hydrogen
molecule and open up the possibility of realizing full quantum control of a two
spin system via microwave excitation.Comment: 13 pages, 9 figure
Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory
RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory
Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP
Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.Várias alterações epidemiológicas ocorreram no perfil das doenças infecciosas hospitalares e comunitárias nos últimos 25 anos. Mudanças sociais e demográficas possivelmente relacionadas com esse fenômeno incluem o rápido crescimento populacional, o aumento da migração urbana e deslocamento através de fronteiras internacionais por turistas e imigrantes, alterações nos habitats de animais e artrópodes que transmitem doença assim como o aumento no número de pacientes com deficiências nas respostas de defesa. Os programas contínuos de vigilância de patógenos emergentes e resistência antimicrobiana são necessários para a detecção em tempo real de novos patógenos assim como para caracterizar mecanismos moleculares de resistência. Para serem mais efetivos, os programasde vigilância dos patógenos emergentes devem ser organizados em uma rede de laboratórios multicêntricos ligados aos principais centros de controle de infecções, públicos e privados. Os dados microbiológicos devem ser integrados a guias terapêuticos adaptando práticas terapêuticas à ecologia local eaos padrões de resistência. O artigo apresenta uma revisão dos dados gerados pela Disciplina de Infectologia, Universidade Federal de São Paulo (UNIFESP), contemplando sua participação nos diferentes programas de vigilância de doenças infecciosas hospitalares e adquiridas na comunidade.Universidade Federal de São Paulo (UNIFESP) Departamento de Medicina Divisão de Doenças InfecciosasUniversidade Federal de São Paulo (UNIFESP) Departamento de Microbiologia, Imunologia e ParasitologiaUNIFESP, Depto. de Medicina Divisão de Doenças InfecciosasUNIFESP, Depto. de Microbiologia, Imunologia e ParasitologiaSciEL
A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.National Human Genome Research Institute (U.S.)National Institute of General Medical Sciences (U.S.) (Grant number GM82901)National Science Foundation (U.S.). Postdoctural Fellowship (Award 0905968)National Science Foundation (U.S.). Career (0644282)National Institutes of Health (U.S.) (R01-HG004037)Alfred P. Sloan Foundation.Austrian Science Fund. Erwin Schrodinger Fellowshi
The Economic Benefits Resulting from the First 8 Years of the Global Programme to Eliminate Lymphatic Filariasis (2000–2007)
Lymphatic filariasis (LF), commonly known as ‘elephantiasis’, is one of the world's most debilitating infectious diseases. In 83 countries worldwide, more than 1.3 billion people are at risk of infection with an estimated 120 million individuals already infected. A recent publication reviewing the health impact of the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis (GPELF) demonstrated the enormous health benefits achieved in populations receiving annual mass drug administration (MDA), as a result of infection prevented, disease progression halted, and ancillary treatment of co-infections. To date, however, no studies have estimated the economic value of these health benefits, either to the individuals or the societies afflicted with LF. Our study estimates that US2.2 billion will be saved by the health systems of endemic countries. Treating endemic populations is possible at very low cost – particularly because of the generous drug donations from two pharmaceutical companies – but results in enormous economic benefits. Findings from this study yield a much clearer understanding the GPELF's full economic impact and strengthen the conviction that it is a ‘best buy’ in global health
The Cost of Antibiotic Mass Drug Administration for Trachoma Control in a Remote Area of South Sudan
Trachoma is one of a group of so-called “neglected tropical diseases” (NTDs) for which safe and effective treatments are available. The International Trachoma Initiative oversees donation of the antibiotic azithromycin to endemic countries. Delivery of this drug to communities affected by trachoma is the responsibility of national programmes and their implementing partners, and should be conducted as part of a comprehensive control strategy termed “SAFE,” which includes trichiasis surgery, health education and water/sanitation interventions. There are little data on how much the different components of a trachoma control programme cost and none from South Sudan. To inform budgeting to scale up control of trachoma, and of other NTDs whose control relies on large-scale mass drug administration (MDA), the present study set out to determine the cost per person treated when antibiotics were delivered through a vertical campaign that covered 94% of the target population in a remote trachoma endemic area of South Sudan. The average economic cost per person treated was USD 1.53, which included all inputs not paid for in cash except for the cost of the donated azithromycin and the opportunity cost of community members attending treatment
Two decades of percutaneous transjejunal biliary intervention for benign biliary disease: a review of the intervention nature and complications
Relationship between atomoxetine plasma concentration, treatment response and tolerability in attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder
The purpose of this study was to examine whether atomoxetine plasma concentration predicts attention-deficit/hyperactivity disorder (ADHD) or oppositional defiant disorder (ODD) response. This post-hoc analysis assessed the relationship between atomoxetine plasma concentration and ADHD and ODD symptoms in patients (with ADHD and comorbid ODD) aged 6–12 years. Patients were randomly assigned to atomoxetine 1.2 mg/kg/day (n = 156) or placebo (n = 70) for 8 weeks (Study Period II). At the end of 8 weeks, ODD non-remitters (score >9 on the SNAP-IV ODD subscale and CGI-I > 2) with atomoxetine plasma concentration <800 ng/ml at 2 weeks were re-randomized to either atomoxetine 1.2 mg/kg/day or 2.4 mg/kg/day for an additional 4 weeks (Study Period III). ODD remitters and non-remitters with plasma atomoxetine ≥800 ng/ml remained on 1.2 mg/kg/day atomoxetine for 4 weeks. Patients who received atomoxetine, completed Study Period II, and entered Study Period III were included in these analyses. All the groups demonstrated improvement on the SNAP-IV ODD and ADHD-combined subscales (P < .001). At the end of Study Periods II and III, ODD and ADHD improvement was significantly greater in the remitter group compared with the non-remitter groups. Symptom improvement was numerically greater in the non-remitter (2.4 mg/kg/day compared with the non-remitter 1.2 mg/kg/day) group. Atomoxetine plasma concentration was not indicative of ODD and ADHD improvement after 12 weeks of treatment. ADHD and ODD symptoms improved in all the groups with longer duration on atomoxetine. Results suggest atomoxetine plasma concentration does not predict ODD and ADHD symptom improvement. However, a higher atomoxetine dose may benefit some patients
Spike-Timing Theory of Working Memory
Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds
Economic evaluations of lymphatic filariasis interventions: a systematic review and research needs
- …
