12 research outputs found

    Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (Abeta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD.In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer.These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology

    Glial regulation of the blood-brain barrier in health and disease

    No full text
    The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.Dr. Prat is a senior Scholar of the FRQS. Dr. Broux is a postdoctoral fellow of Fonds voor Wetenschappelijk Onderzoek (FWO) Flanders. Ms. Gowing is funded by the Canadian Institutes of Health Research Strategic Training Program in Neuroinflammation. The work herein was funded by an operating grant from the MS Society of Canada.blood-brain barrier; central nervous system; development; astrocytes; microglia; endothelial cells; neuroinflammation; multiple sclerosi

    Klinische richtlijnen voor therapie met samengestelde gezinnen: wat therapeuten moeten weten

    No full text

    Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights

    No full text
    corecore