63 research outputs found

    The Ratio and Concentration of Two Monoterpenes Mediate Fecundity of the Pinewood Nematode and Growth of Its Associated Fungi

    Get PDF
    The pinewood nematode (PWN) Bursaphelenchus xylophilus, vectored primarily by the sawyer beetle, Monochamus alternatus, is an important invasive pest and causal agent of pine wilt disease of Chinese Masson pine, Pinus massoniana. Previous work demonstrated that the ratios and concentrations of α-pinene∶β-pinene differed between healthy trees and those trees containing blue-stain fungus (and M. alternatus pupae). However, the potential influence of the altered monoterpene ratios and concentrations on PWN and associated fungi remained unknown. Our current results show that low concentrations of the monoterpenes within petri dishes reduced PWN propagation, whereas the highest concentration of the monoterpenes increased PWN propagation. The propagation rate of PWN treated with the monoterpene ratio representative of blue-stain infected pine (α-pinene∶β-pinene = 1∶0.8, 137.6 mg/ml) was significantly higher than that (α-pinene∶β-pinene = 1∶0.1, 137.6 mg/ml) representative of healthy pines or those damaged by M. alternatus feeding, but without blue stain. Furthermore, inhibition of mycelial growth of associated fungi increased with the concentration of the monoterpenes α-pinene and β-pinene. Additionally, higher levels of β-pinene (α-pinene∶β-pinene = 1∶0.8) resulted in greater inhibition of the growth of the associated fungi Sporothrix sp.2 and Ophiostoma ips strains, but had no significant effects on the growth of Sporothrix sp.1, which is the best food resource for PWN. These results suggest that host monoterpenes generally reduce the reproduction of PWN. However, PWN utilizes high monoterpene concentrations and native blue-stain fungus Sporothrix sp.1 to improve its own propagation and overcome host resistance, which may provide clues to understanding the ecological mechanisms of PWN's successful invasion

    Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?

    Get PDF
    Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35-40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species

    Response of the Cutworm Spodoptera litura to Sesame Leaves or Crude Extracts in Diet

    Get PDF
    The effects of extracts of sesame, Sesamum indicum L. (Liamiales: Pedaliaceae), and whole leaves of some selected cultivars of sesame were tested using a natural host Spodoptera litura (F.) (Lepidoptera: Noctuidae). Indices taken using the immature stages include; diet utilization, growth and development and induction of detoxification enzymes. The results indicate that S. litura generally selects its food amongst cultivars within 6 hours after food presentation. Growth and development of the insect is controlled also by plant acceptability and quality. Although all the cultivars tested significantly limit insect growth and development the variety 56S-radiatum did not allow a complete life cycle as pupation from first instar stage was 0%. Generally the crucial period for immature S. litura was the larval period, especially the first two instars where the weight of an insect fed on an experimental diet was three times lower than that of a control diet. The larval developmental period was greater than 40 days as compared to 17 days for insects fed a control diet. S. litura also had lowered efficiency in utilizing ingested food, from a low of 13% in a sesame cultivar to 45% in the control diet. The key detoxification enzyme was a glutathione s-transferase that was confirmed by a 6-fold increase between S. litura fed a plant cultivar vs. a control diet towards the substrate 1,2-dichloro-4-nitrobenzene. First and second instars of S. litura have a relatively reduced detoxification of enzymes in response to plant cultivar diets leading to low survival. A 3% v/w crude extract of the cultivars increased enzyme induction towards all the tested substrates

    The Role of Phytopathogenicity in Bark Beetle–Fungus Symbioses: A Challenge to the Classic Paradigm

    No full text
    The idea that phytopathogenic fungi associated with tree-killing bark beetles are critical for overwhelming tree defenses and incurring host tree mortality, herein called the classic paradigm (CP), has driven research on bark beetle–fungus symbiosis for decades. It has also strongly influenced our views of bark beetle ecology. We discuss fundamental flaws in the CP, including the lack of consistency of virulent fungal associates with tree-killing bark beetles, the lack of correspondence between fungal growth in the host tree and the development of symptoms associated with a successful attack, and the ubiquity of similar associations of fungi with bark beetles that do not kill trees. We suggest that, rather than playing a supporting role for the host beetle (tree killing), phytopathogenicity performs an important role for the fungi. In particular, phytopathogenicity may mediate competitive interactions among fungi and support survival and efficient resource capture in living, defensive trees.DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), South Afric

    Nonanoic acid, other alkanoic acids, and related compounds as antifeedants in Hylobius abietis pine weevils

    No full text
    A medium-length, straight-chain alkanoic acid, nonanoic acid, is known from laboratory microassays to be an antifeedant in adults of the large pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae). Our hypothesis was that we could find new, less volatile alkanoic acids or related compounds suitable for field application and with improved long-term duration. Alkanoic acids of varying chain lengths (C6-C13) were tested for antifeedant activity in H. abietis adults. Microassay choice tests showed that straight-chain (C6-C11) alkanoic acids were active. However, high activities were restricted to the (C6-C10) acids, with the C9 (nonanoic acid) at 4 μmol cm-2 being the most active one. In a no-choice test on pine twigs, the antifeedant effect of C10 acid was lower than that of the C8 and C9 acids. In microassays, less volatile methyl-branched alkanoic acids exhibited lower antifeedant activities than did the corresponding straight-chain ones. However, the most active of the methyl-branched acids, 2-methyldecanoic acid, had an activity similar to that of nonanoic acid. Compounds related to nonanoic acid were either active (1-nonanol), weakly active (nonanoic anhydride), or inactive (nonanal, sodium nonanoate). The anhydride was highly active in the microassay, but less active on twigs. The antifeedant effects of the straight chain (C8-C10) alkanoic acids against pine weevil feeding were tested in the field. In contrast to the results from the twig tests, the less volatile C10 acid was more active in the field for the protection of transplants on fresh clear cuts over a 3-month period than both the C8 and C9 acids. Phytotoxic effects of the alkanoic acids were observed both in the field and in laboratory studies. If a protective layer of paraffin was applied to the stem prior to application of the alkanoic acids, these undesired side effects were reduced.</p

    Conifer Stored Resources and Resistance to a Fungus Associated with the Spruce Bark Beetle Ips typographus

    Get PDF
    Bark beetles and associated fungi are among the greatest natural threats to conifers worldwide. Conifers have potent defenses, but resistance to beetles and fungal pathogens may be reduced if tree stored resources are consumed by fungi rather than used for tree defense. Here, we assessed the relationship between tree stored resources and resistance to Ceratocystis polonica, a phytopathogenic fungus vectored by the spruce bark beetle Ips typographus. We measured phloem and sapwood nitrogen, non-structural carbohydrates (NSC), and lipids before and after trees were attacked by I. typographus (vectoring C. polonica) or artificially inoculated with C. polonica alone. Tree resistance was assessed by measuring phloem lesions and the proportion of necrotic phloem around the tree's circumference following attack or inoculation. While initial resource concentrations were unrelated to tree resistance to C. polonica, over time, phloem NSC and sapwood lipids declined in the trees inoculated with C. polonica. Greater resource declines correlated with less resistant trees (trees with larger lesions or more necrotic phloem), suggesting that resource depletion may be caused by fungal consumption rather than tree resistance. Ips typographus may then benefit indirectly from reduced tree defenses caused by fungal resource uptake. Our research on tree stored resources represents a novel way of understanding bark beetle-fungal-conifer interactions
    corecore