39 research outputs found

    Graphical Approach to Model Reduction for Nonlinear Biochemical Networks

    Get PDF
    Model reduction is a central challenge to the development and analysis of multiscale physiology models. Advances in model reduction are needed not only for computational feasibility but also for obtaining conceptual insights from complex systems. Here, we introduce an intuitive graphical approach to model reduction based on phase plane analysis. Timescale separation is identified by the degree of hysteresis observed in phase-loops, which guides a “concentration-clamp” procedure for estimating explicit algebraic relationships between species equilibrating on fast timescales. The primary advantages of this approach over Jacobian-based timescale decomposition are that: 1) it incorporates nonlinear system dynamics, and 2) it can be easily visualized, even directly from experimental data. We tested this graphical model reduction approach using a 25-variable model of cardiac β1-adrenergic signaling, obtaining 6- and 4-variable reduced models that retain good predictive capabilities even in response to new perturbations. These 6 signaling species appear to be optimal “kinetic biomarkers” of the overall β1-adrenergic pathway. The 6-variable reduced model is well suited for integration into multiscale models of heart function, and more generally, this graphical model reduction approach is readily applicable to a variety of other complex biological systems

    Hidden dynamics of soccer leagues: the predictive ‘power’ of partial standings

    Get PDF
    Objectives Soccer leagues reflect the partial standings of the teams involved after each round of competition. However, the ability of partial league standings to predict end-of-season position has largely been ignored. Here we analyze historical partial standings from English soccer to understand the mathematics underpinning league performance and evaluate the predictive ‘power’ of partial standings. Methods Match data (1995-2017) from the four senior English leagues was analyzed, together with random match scores generated for hypothetical leagues of equivalent size. For each season the partial standings were computed and Kendall’s normalized tau-distance and Spearman r-values determined. Best-fit power-law and logarithmic functions were applied to the respective tau-distance and Spearman curves, with the ‘goodness-of-fit’ assessed using the R2 value. The predictive ability of the partial standings was evaluated by computing the transition probabilities between the standings at rounds 10, 20 and 30 and the final end-of-season standings for the 22 seasons. The impact of reordering match fixtures was also evaluated. Results All four English leagues behaved similarly, irrespective of the teams involved, with the tau-distance conforming closely to a power law (R2>0.80) and the Spearman r-value obeying a logarithmic function (R2>0.87). The randomized leagues also conformed to a power-law, but had a different shape. In the English leagues, team position relative to end-of-season standing became ‘fixed’ much earlier in the season than was the case with the randomized leagues. In the Premier League, 76.9% of the variance in the final standings was explained by round-10, 87.0% by round-20, and 93.9% by round-30. Reordering of match fixtures appeared to alter the shape of the tau-distance curves. Conclusions All soccer leagues appear to conform to mathematical laws, which constrain the league standings as the season progresses. This means that partial standings can be used to predict end-of-season league position with reasonable accuracy

    Orbit and Constellation Design

    No full text
    corecore