125 research outputs found
Antimicrobial prescription patterns and ventilator associated pneumonia: Findings from a 10-site prospective audit
© 2018 The Author(s). Objective: To examine anti-microbial prescribing practices associated with ventilator-associated pneumonia from data gathered during an audit of practice and outcomes in intensive care units (ICUs) in a previously published study. Results: The patient sample of 169 was 65% male with an average age of 59.7 years, a mean APACHE II score of 20.6, and a median ICU stay of 11 days. While ventilator-associated pneumonia was identified using a specific 4-item checklist in 29 patients, agreement between the checklist and independent physician diagnosis was only 17%. Sputum microbe culture reporting was sparse. Approximately 75% of the sample was administered an antimicrobial (main indications: lung infection [54%] and prophylaxis [11%]). No clinical justification was documented for 20% of prescriptions. Piperacillin/tazobactam was most frequently prescribed (1/3rd of all antimicrobial prescriptions) with about half of those for prophylaxis. Variations in prescribing practices were identified, including apparent gaps in antimicrobial stewardship; particularly in relation to prescribing for prophylaxis and therapy de-escalation. Sputum microbe culture reports for VAP did not appear to contribute to prescribing decisions but physician suspicion of lung infection and empiric therapy rather than ventilator-associated pneumonia criteria and guideline concordance
Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.
The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain
The management of children with bronchiolitis in the Australasian hospital setting: Development of a clinical practice guideline
© 2018 The Author(s).
Background: Bronchiolitis is the commonest respiratory infection in children less than 12 months and cause of hospitalisation in infants under 6 months of age in Australasia. Unfortunately there is substantial variation in management, despite high levels of supporting evidence. This paper reports on the process, strengths and challenges of the hybrid approach used to develop the first Australasian management guideline relevant to the local population. Method: An adaption of the nine steps recommended by the National Health and Medical Research Council (NHMRC) and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology were utilised. Following establishment of the Guideline Development Committee (GDC), we identified the population, intervention, comparator, outcomes and time of interest (PICOt) questions, undertook a systematic literature search and graded the evidence and recommendations using the NHMRC and GRADE processes. Using Nominal Group Techniques (NGT), consensus was sought in formulating the clinical practice recommendations and practice points. Key health professional bodies were consulted to ensure relevance in the Australasian emergency and ward settings. Results: From 33 PICOT questions, clinical recommendations for practice that were deemed relevant to the Australasian population were identified. Specific considerations for the management of Australian and New Zealand indigenous infants in relation to the use of azithromycin and risk factors for more serious illness are included. Using NGT, consensus demonstrated by a median Likert score > 8 for all recommendations was achieved. The guideline presents clinical guidance, followed by the key recommendations and evidence review behind each recommendation. Conclusion: Developing evidence-based clinical guidelines is a complex process with considerable challenges. Challenges included having committee members located over two countries and five time zones, large volume of literature and variation of member's knowledge of grading of evidence and recommendations. The GRADE and NHMRC processes provided a systematic and transparent approach ensuring a final structure including bedside interface, and a descriptive summary of the evidence base and tables for each key statement. Involvement of stakeholders who will ultimately be end-users as members of the GDC provided valuable knowledge. Lessons learnt during this guideline development process provide valuable insight for those planning development of evidence-based guidelines
Prefrontal Norepinephrine Determines Attribution of “High” Motivational Salience
Intense motivational salience attribution is considered to have a major role in the development of different psychopathologies. Numerous brain areas are involved in “normal” motivational salience attribution processes; however, it is not clear whether common or different neural mechanisms also underlie intense motivational salience attribution. To elucidate this a brain area and a neural system had to be envisaged that were involved only in motivational salience attribution to highly salient stimuli. Using intracerebral microdialysis, we found that natural stimuli induced an increase in norepinephrine release in the medial prefrontal cortex of mice proportional to their salience, and that selective prefrontal norepinephrine depletion abolished the increase of norepinephrine release in the medial prefrontal cortex induced by exposure to appetitive (palatable food) or aversive (light) stimuli independently of salience. However, selective norepinephrine depletion in the medial prefrontal cortex impaired the place conditioning induced exclusively by highly salient stimuli, thus indicating that prefrontal noradrenergic transmission determines approach or avoidance responses to both reward- and aversion-related natural stimuli only when the salience of the unconditioned natural stimulus is high enough to induce sustained norepinephrine outflow. This affirms that prefrontal noradrenergic transmission determines motivational salience attribution selectively when intense motivational salience is processed, as in conditions that characterize psychopathological outcomes
Novel and Conserved Protein Macoilin Is Required for Diverse Neuronal Functions in Caenorhabditis elegans
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity
A Specific and Rapid Neural Signature for Parental Instinct
Darwin originally pointed out that there is something about infants which prompts adults to respond to and care for them, in order to increase individual fitness, i.e. reproductive success, via increased survivorship of one's own offspring. Lorenz proposed that it is the specific structure of the infant face that serves to elicit these parental responses, but the biological basis for this remains elusive. Here, we investigated whether adults show specific brain responses to unfamiliar infant faces compared to adult faces, where the infant and adult faces had been carefully matched across the two groups for emotional valence and arousal, as well as size and luminosity. The faces also matched closely in terms of attractiveness. Using magnetoencephalography (MEG) in adults, we found that highly specific brain activity occurred within a seventh of a second in response to unfamiliar infant faces but not to adult faces. This activity occurred in the medial orbitofrontal cortex (mOFC), an area implicated in reward behaviour, suggesting for the first time a neural basis for this vital evolutionary process. We found a peak in activity first in mOFC and then in the right fusiform face area (FFA). In mOFC the first significant peak (p<0.001) in differences in power between infant and adult faces was found at around 130 ms in the 10–15 Hz band. These early differences were not found in the FFA. In contrast, differences in power were found later, at around 165 ms, in a different band (20–25 Hz) in the right FFA, suggesting a feedback effect from mOFC. These findings provide evidence in humans of a potential brain basis for the “innate releasing mechanisms” described by Lorenz for affection and nurturing of young infants. This has potentially important clinical applications in relation to postnatal depression, and could provide opportunities for early identification of families at risk
Influence of menstrual cycle phase on resting-state functional connectivity in naturally cycling, cigarette-dependent women
Syndromics: A Bioinformatics Approach for Neurotrauma Research
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings
- …
