72 research outputs found
Repurposing a photosynthetic antenna protein as a super-resolution microscopy label
Techniques such as Stochastic Optical Reconstruction Microscopy (STORM) and Structured Illumination Microscopy (SIM) have increased the achievable resolution of optical imaging, but few fluorescent proteins are suitable for super-resolution microscopy, particularly in the far-red and near-infrared emission range. Here we demonstrate the applicability of CpcA, a subunit of the photosynthetic antenna complex in cyanobacteria, for STORM and SIM imaging. The periodicity and width of fabricated nanoarrays of CpcA, with a covalently attached phycoerythrobilin (PEB) or phycocyanobilin (PCB) chromophore, matched the lines in reconstructed STORM images. SIM and STORM reconstructions of Escherichia coli cells harbouring CpcA-labelled cytochrome bd 1 ubiquinol oxidase in the cytoplasmic membrane show that CpcA-PEB and CpcA-PCB are suitable for super-resolution imaging in vivo. The stability, ease of production, small size and brightness of CpcA-PEB and CpcA-PCB demonstrate the potential of this largely unexplored protein family as novel probes for super-resolution microscopy
Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium
Clostridium autoethanogenum is an acetogenic bacterium capable of producing high value commodity chemicals and biofuels from the C1 gases present in synthesis gas. This common industrial waste gas can act as the sole energy and carbon source for the bacterium that converts the low value gaseous components into cellular building blocks and industrially relevant products via the action of the reductive acetyl-CoA (Wood-Ljungdahl) pathway. Current research efforts are focused on the enhancement and extension of product formation in this organism via synthetic biology approaches. However, crucial to metabolic modelling and directed pathway engineering is a reliable and comprehensively annotated genome sequence
Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts
Background: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. Results:The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. Conclusions: We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations
Hypoxia Disruption of Vertebrate CNS Pathfinding through EphrinB2 Is Rescued by Magnesium
The mechanisms of hypoxic injury to the developing human brain are poorly understood, despite being a major cause of chronic neurodevelopmental impairments. Recent work in the invertebrate Caenorhabditis elegans has shown that hypoxia causes discrete axon pathfinding errors in certain interneurons and motorneurons. However, it is unknown whether developmental hypoxia would have similar effects in a vertebrate nervous system. We have found that developmental hypoxic injury disrupts pathfinding of forebrain neurons in zebrafish (Danio rerio), leading to errors in which commissural axons fail to cross the midline. The pathfinding defects result from activation of the hypoxia-inducible transcription factor (hif1) pathway and are mimicked by chemical inducers of the hif1 pathway or by expression of constitutively active hif1α. Further, we found that blocking transcriptional activation by hif1α helped prevent the guidance defects. We identified ephrinB2a as a target of hif1 pathway activation, showed that knock-down of ephrinB2a rescued the guidance errors, and showed that the receptor ephA4a is expressed in a pattern complementary to the misrouting axons. By targeting a constitutively active form of ephrinB2a to specific neurons, we found that ephrinB2a mediates the pathfinding errors via a reverse-signaling mechanism. Finally, magnesium sulfate, used to improve neurodevelopmental outcomes in preterm births, protects against pathfinding errors by preventing upregulation of ephrinB2a. These results demonstrate that evolutionarily conserved genetic pathways regulate connectivity changes in the CNS in response to hypoxia, and they support a potential neuroprotective role for magnesium
Help-Seeking Barriers Among Sexual and Gender Minority Individuals Who Experience Intimate Partner Violence Victimization
Sexual and gender minority (SGM) individuals experience intimate partner violence (IPV) victimization at disproportionate rates compared to cisgender and heterosexual individuals. Given the widespread consequences of experiencing IPV victimization, intervention and prevention strategies should identify readily accessible and culturally competent services for this population. SGM individuals who experience IPV victimization face unique individual-, interpersonal-, and systemic-level barriers to accessing informal and formal support services needed to recover from IPV. This chapter reviews IPV victimization prevalence rates among SGM individuals in the context of minority stress and highlights unique forms of IPV victimization affecting this population, namely identity abuse. The literature on help-seeking processes among IPV survivors in general and help-seeking patterns and barriers specifically among SGM individuals who experience IPV victimization in the context of minority stress (e.g., discrimination, internalized stigma, rejection sensitivity, identity concealment) are discussed. How minority stressors at individual, interpersonal, and structural levels act as barriers to help-seeking among SGM individuals experiencing IPV victimization is presented. The chapter concludes with a review of emerging evidence for interventions aimed at reducing help-seeking barriers among SGM individuals who face IPV victimization and a discussion of future directions for research on help-seeking barriers in this population
An N-methyl-d-aspartate receptor agonist facilitates sleep-independent synaptic plasticity associated with working memory capacity enhancement
Working memory (WM) capacity improvement is impacted by sleep, and possibly by N-methyl-D-aspartate (NMDA) agonists such as D-cycloserine (DCS), which also affects procedural skill performance. However, the mechanisms behind these relationships are not well understood. In order to investigate the neural basis underlying relationships between WM skill learning and sleep, DCS, and both sleep and DCS together, we evaluated training-retest performances in the n-back task among healthy subjects who were given either a placebo or DCS before the task training, and then followed task training sessions either with wakefulness or sleep. DCS facilitated WM capacity enhancement only occurring after a period of wakefulness, rather than sleep, indicating that WM capacity enhancement is affected by a cellular heterogeneity in synaptic plasticity between time spent awake and time spent asleep. These findings may contribute to development, anti-aging processes, and rehabilitation of higher cognition
Multipoint genome-wide linkage scan for nonword repetition in a multigenerational family further supports chromosome 13q as a locus for verbal trait disorders
Verbal trait disorders encompass a wide range of conditions and are marked by deficits in five domains that impair a person’s ability to communicate: speech, language, reading, spelling, and writing. Nonword repetition is a robust endophenotype for verbal trait disorders that is sensitive to cognitive processes critical to verbal development, including auditory processing, phonological working memory, and motor planning and programming. In the present study, we present a six-generation extended pedigree with a history of verbal trait disorders. Using genome-wide multipoint variance component linkage analysis of nonword repetition, we identified a region spanning chromosome 13q14–q21 with LOD = 4.45 between 52 and 55 cM, spanning approximately 5.5 Mb on chromosome 13. This region overlaps with SLI3, a locus implicated in reading disability in families with a history of specific language impairment. Our study of a large multigenerational family with verbal trait disorders further implicates the SLI3 region in verbal trait disorders. Future studies will further refine the specific causal genetic factors in this locus on chromosome 13q that contribute to language traits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00439-016-1717-z) contains supplementary material, which is available to authorized users
- …
