20 research outputs found
Enhanced 5-fluorouracil cytotoxicity in high cyclooxygenase-2 expressing colorectal cancer cells and xenografts induced by non-steroidal anti-inflammatory drugs via downregulation of dihydropyrimidine dehydrogenase
Amidohydrolases of the reductive pyrimidine catabolic pathway Purification, characterization, structure, reaction mechanism and enzyme deficiency
Dihydropyrimidine dehydrogenase: a flavoprotein with four iron-sulfur clusters (vol 1701, pg 61, 2004)
Mechanisms of the effects of nicorandil in the isolated rat heart during ischemia and reperfusion: a 31P-nuclear magnetic resonance study.
Nicorandil (SG75) is a potent K+-channel activator with an additional nitro moiety. In the present study we investigated the potential mechanisms (K+-channel activation and nitric oxide [NO] release) for the effects of nicorandil on isolated perfused rat hearts during total global ischemia using 31P-nuclear magnetic resonance. After a 10-min control perfusion, hearts were subjected to treatment with nicorandil-containing (100, 300, or 1000 microM) buffer for 10 min, 15 min of total global ischemia, and 30 min of reperfusion. At high dose (10(-3) M), nicorandil reduced ATP depletion during ischemia by 26% compared with untreated hearts. Blockade of K+ channels by glibenclamide prevented this protective effect. At all doses (10(-4) to 10(-3) M), nicorandil reduced the accumulation of protons during ischemia compared with untreated hearts (pH 6.22 +/- 0.03 vs. 6.02 +/- 0.05 in untreated hearts at the end of ischemia). This effect was preserved after blockade of K+ channels by glibenclamide. Hearts treated with nitroglycerine before ischemia also showed reduced proton accumulation. Therefore, NO release accompanied by increased coronary flow before ischemia, which is caused by the nitro moiety of nicorandil and nitroglycerine treatment, results in reduced proton accumulation. During reperfusion, a pro-arrhythmic effect was observed in hearts treated with the nonpharmacologically high dose of nicorandil (1000 microM). Thus, we conclude that the effects of nicorandil are caused by the simultaneous action of both mechanisms K+-channel activation and NO release. The activation of K+ channels prevents deterioration of ATP during ischemia, whereas NO release and increased coronary flow reduce the accumulation of protons--and thus the decrease in pH--during ischemia
Functional and energetic consequences of chronic myocardial creatine depletion by beta-guanidinopropionate in perfused hearts and in intact rats.
Oral feeding with the creatine analogue beta-guanidinopropionate (beta-GP) reduces myocardial phosphocreatine and creatine concentrations by about 80%in vitro, this is accompanied by reduced contractile performance. We hypothesized, thus, that beta-GP feeding leads to hemodynamic changes in vivo characteristic of heart failure. beta-GP was fed to Wistar rats for up to 8 weeks. In isolated hearts, function was measured isovolumically, myocardial energetics were followed with (31)P-NMR spectroscopy. In vivo hemodynamics were measured with Millar-Tip-catheters and an electromagnetic flow probe. Beta-GP feeding did not alter heart weight. In vitro, diastolic pressure-volume curves indicated structural left ventricular dilatation, and a 36% reduction of left ventricular developed pressure was found; phosphocreatine was reduced by approximately 80%, ATP unchanged and creatine kinase reaction velocity ((31)P-MR saturation transfer) decreased by approximately 90%. The total creatine pool (high-pressure liquid chromatography) was reduced by up to approximately 70%. In contrast to in vitro findings, in vivo cardiac hemodynamics (including left ventricular developed pressure, d P/d t(max), cardiac output and peripheral vascular resistance) at rest and during acute volume loading showed no alterations after beta-GP feeding. The only functional impairment observed in vivo was a 14% reduction of maximum left ventricular developed pressure during brief aortic occlusion. In the intact rat, cardiac and/or humoral compensatory mechanisms are sufficient to maintain normal hemodynamics in spite of a 90% reduction of creatine kinase reaction velocity. However, chronic beta-GP feeding leads to structural left ventricular dilatation
Recommended from our members
Role of pyridoxal 5'-phosphate in the structural stabilization of O-acetylserine sulfhydrylase.
Proteins belonging to the superfamily of pyridoxal 5'-phosphate-dependent enzymes are currently classified into three functional groups and five distinct structural fold types. The variation within this enzyme group creates an ideal system to investigate the relationships among amino acid sequences, folding pathways, and enzymatic functions. The number of known three-dimensional structures of pyridoxal 5'-phosphate-dependent enzymes is rapidly increasing, but only for relatively few have the folding mechanisms been characterized in detail. The dimeric O-acetylserine sulfhydrylase from Salmonella typhimurium belongs to the beta-family and fold type II group. Here we report the guanidine hydrochloride-induced unfolding of the apo- and holoprotein, investigated using a variety of spectroscopic techniques. Data from absorption, fluorescence, circular dichroism, (31)P nuclear magnetic resonance, time-resolved fluorescence anisotropy, and photon correlation spectroscopy indicate that the O-acetylserine sulfhydrylase undergoes extensive disruption of native secondary and tertiary structure before monomerization. Also, we have observed that the holo-O-acetylserine sulfhydrylase exhibits a greater conformational stability than the apoenzyme form. The data are discussed in light of the fact that the role of the coenzyme in structural stabilization varies among the pyridoxal 5'-phosphate-dependent enzymes and does not seem to be linked to the particular enzyme fold type
Recommended from our members
Role of pyridoxal 5'-phosphate in the structural stabilization of O-acetylserine sulfhydrylase.
Proteins belonging to the superfamily of pyridoxal 5'-phosphate-dependent enzymes are currently classified into three functional groups and five distinct structural fold types. The variation within this enzyme group creates an ideal system to investigate the relationships among amino acid sequences, folding pathways, and enzymatic functions. The number of known three-dimensional structures of pyridoxal 5'-phosphate-dependent enzymes is rapidly increasing, but only for relatively few have the folding mechanisms been characterized in detail. The dimeric O-acetylserine sulfhydrylase from Salmonella typhimurium belongs to the beta-family and fold type II group. Here we report the guanidine hydrochloride-induced unfolding of the apo- and holoprotein, investigated using a variety of spectroscopic techniques. Data from absorption, fluorescence, circular dichroism, (31)P nuclear magnetic resonance, time-resolved fluorescence anisotropy, and photon correlation spectroscopy indicate that the O-acetylserine sulfhydrylase undergoes extensive disruption of native secondary and tertiary structure before monomerization. Also, we have observed that the holo-O-acetylserine sulfhydrylase exhibits a greater conformational stability than the apoenzyme form. The data are discussed in light of the fact that the role of the coenzyme in structural stabilization varies among the pyridoxal 5'-phosphate-dependent enzymes and does not seem to be linked to the particular enzyme fold type
Role of pyridoxal 5’-phosphate in the structural stabilization of O-acetylserine sulfhydrylase
Proteins belonging to the superfamily of pyridoxal 5′-phosphate-dependent enzymes are currently classified into three functional groups and five distinct structural fold types. The variation within this enzyme group creates an ideal system to investigate the relationships among amino acid sequences, folding pathways, and enzymatic functions. The number of known three-dimensional structures of pyridoxal 5′-phosphate-dependent enzymes is rapidly increasing, but only for relatively few have the folding mechanisms been characterized in detail. The dimeric O-acetylserine sulfhydrylase fromSalmonella typhimurium belongs to the β-family and fold type II group. Here we report the guanidine hydrochloride-induced unfolding of the apo- and holoprotein, investigated using a variety of spectroscopic techniques. Data from absorption, fluorescence, circular dichroism, 31P nuclear magnetic resonance, time-resolved fluorescence anisotropy, and photon correlation spectroscopy indicate that the O-acetylserine sulfhydrylase undergoes extensive disruption of native secondary and tertiary structure before monomerization. Also, we have observed that the holo-O-acetylserine sulfhydrylase exhibits a greater conformational stability than the apoenzyme form. The data are discussed in light of the fact that the role of the coenzyme in structural stabilization varies among the pyridoxal 5′-phosphate-dependent enzymes and does not seem to be linked to the particular enzyme fold type
Phenotypical characterisation of a putative ω-amino acid transaminase in the yeast Scheffersomyces stipitis
Inhibition of a Putative Dihydropyrimidinase from Pseudomonas aeruginosa PAO1 by Flavonoids and Substrates of Cyclic Amidohydrolases
Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. These metalloenzymes possess very similar active sites and may use a similar mechanism for catalysis. However, whether the substrates and inhibitors of other cyclic amidohydrolases can inhibit dihydropyrimidinase remains unclear. This study investigated the inhibition of dihydropyrimidinase by flavonoids and substrates of other cyclic amidohydrolases. Allantoin, dihydroorotate, 5-hydantoin acetic acid, acetohydroxamate, orotic acid, and 3-amino-1,2,4-triazole could slightly inhibit dihydropyrimidinase, and the IC50 values of these compounds were within the millimolar range. The inhibition of dihydropyrimidinase by flavonoids, such as myricetin, quercetin, kaempferol, galangin, dihydromyricetin, and myricitrin, was also investigated. Some of these compounds are known as inhibitors of allantoinase and dihydroorotase. Although the inhibitory effects of these flavonoids on dihydropyrimidinase were substrate-dependent, dihydromyricetin significantly inhibited dihydropyrimidinase with IC50 values of 48 and 40 μM for the substrates dihydrouracil and 5-propyl-hydantoin, respectively. The results from the Lineweaver-Burk plot indicated that dihydromyricetin was a competitive inhibitor. Results from fluorescence quenching analysis indicated that dihydromyricetin could form a stable complex with dihydropyrimidinase with the K(d) value of 22.6 μM. A structural study using PatchDock showed that dihydromyricetin was docked in the active site pocket of dihydropyrimidinase, which was consistent with the findings from kinetic and fluorescence studies. This study was the first to demonstrate that naturally occurring product dihydromyricetin inhibited dihydropyrimidinase, even more than the substrate analogs (>3 orders of magnitude). These flavonols, particularly myricetin, may serve as drug leads and dirty drugs (for multiple targets) for designing compounds that target several cyclic amidohydrolases
