4 research outputs found
Heat transfer to bodies engulfed in di-tert-butyl peroxide pool fires - Numerical simulations
The thermal response of bodies engulfed in di-tert-butyl peroxide (DTBP) pool fires is studied numerically. High heat release rates, high velocities and high emissive powers portray the combustion of DTBP. This makes exceptionally hazard for bodies engulfed in DTBP fire accidents. The concept of adiabatic surface temperature (AST) is applied for DTBP pool fires to circumvent the difficulty of defining the fire exposure boundary condition at the solid surface. Adiabatic surface temperatures (AST) are computed for pool diameters 1.13 m and 3.4 m using the fire dynamics simulator. The thermal response of cask in a 1.13 m DTBP pool fire is studied to verify the concept of AST. It is found that a cask encounters twofold the heat fluxes in DTBP fires than in diesel pool fires. More than 30% of the net heat flux to the cask is a direct result of the convective heat exchange between the fire and the cask. This implies that the regular safety guidelines formulated for hydrocarbon pool fires are not adequate for the safety of the bodies engulfed in DTBP pool fires. (C) 2016 Elsevier Ltd. All rights reserved
Application of Fmoc-SPPS, thiol-maleimide conjugation, and copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction in the synthesis of a complex peptide-based vaccine candidate against Group A Streptococcus
Fmoc solid-phase peptide synthesis (SPPS) is the most common approach used to synthesize natural and unnatural peptides. However, the synthesis of sequences longer than 30-60 amino acids is associated with a drastic reduction in peptide quality. Thus, large and complex peptides are normally synthesized as fragments, which are then conjugated together. Here, we describe the synthesis of a large, branched peptide, a multi-epitope vaccine candidate against Group A Streptococcus, with the help of microwave-assisted Fmoc-SPPS, thiol-maleimide conjugation, and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" reaction
