5,609 research outputs found
Parity violating cylindrical shell in the framework of QED
We present calculations of Casimir energy (CE) in a system of quantized
electromagnetic (EM) field interacting with an infinite circular cylindrical
shell (which we call `the defect'). Interaction is described in the only
QFT-consistent way by Chern-Simon action concentrated on the defect, with a
single coupling constant .
For regularization of UV divergencies of the theory we use % physically
motivated Pauli-Villars regularization of the free EM action. The divergencies
are extracted as a polynomial in regularization mass , and they renormalize
classical part of the surface action.
We reveal the dependence of CE on the coupling constant . Corresponding
Casimir force is attractive for all values of . For we
reproduce the known results for CE for perfectly conducting cylindrical shell
first obtained by DeRaad and Milton.Comment: Typos corrected. Some references adde
A screen of Crohn's disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells.
Microbial metabolites are an emerging class of mediators influencing CD4+ T-cell function. To advance the understanding of direct causal microbial factors contributing to Crohn's disease, we screened 139 predicted Crohn's disease-associated microbial metabolites for their bioactivity on human CD4+ T-cell functions induced by disease-associated T helper 17 (Th17) polarizing conditions. We observed 15 metabolites with CD4+ T-cell bioactivity, 3 previously reported, and 12 unprecedented. A deeper investigation of the microbe-derived metabolite, ascorbate, revealed its selective inhibition on activated human CD4+ effector T cells, including IL-17A-, IL-4-, and IFNγ-producing cells. Mechanistic assessment suggested the apoptosis of activated human CD4+ T cells associated with selective inhibition of energy metabolism. These findings suggest a substantial rate of relevant T-cell bioactivity among Crohn's disease-associated microbial metabolites, and evidence for novel modes of bioactivity, including targeting of T-cell energy metabolism
The Laser Astrometric Test of Relativity Mission
This paper discusses new fundamental physics experiment to test relativistic
gravity at the accuracy better than the effects of the 2nd order in the
gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR)
mission uses laser interferometry between two micro-spacecraft whose lines of
sight pass close by the Sun to accurately measure deflection of light in the
solar gravity. The key element of the experimental design is a redundant
geometry optical truss provided by a long-baseline (100 m) multi-channel
stellar optical interferometer placed on the International Space Station. The
geometric redundancy enables LATOR to measure the departure from Euclidean
geometry caused by the solar gravity field to a very high accuracy. LATOR will
not only improve the value of the parameterized post-Newtonian (PPN) parameter
gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach
ability to measure effects of the next post-Newtonian order (1/c^4) of light
deflection resulting from gravity's intrinsic non-linearity. The solar
quadrupole moment parameter, J2, will be measured with high precision, as well
as a variety of other relativistic. LATOR will lead to very robust advances in
the tests of fundamental physics: this mission could discover a violation or
extension of general relativity, or reveal the presence of an additional long
range interaction in the physical law. There are no analogs to the LATOR
experiment; it is unique and is a natural culmination of solar system gravity
experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International
Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12
December 2003, Washington, D
Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography
Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three sub-Angstrom resolution X-ray crystal structures of CTX-M \u3b2-lactamase, representing three stages of the enzymatic pathway, apo protein (0.79 \uc5), pre-covalent complex (0.89 \uc5), and acylation transition state analog (0.84 \uc5). The binding of a non-covalent ligand induces a proton transfer from the catalytic Ser70 to the general base Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73. QM/MM reaction path calculations determined the proton transfer barrier between Ser70 and Lys73 to be 1.53 kcal/mol, further confirming the presence of a LBHB. This LBHB is absent in the other two structures. Our data represents the first evidence of a direct and transient LBHB stabilizing a nucleophilic serine, as hypothesized by Cleland and Kreevoy. These results have important implications for the study of enzyme mechanisms as well as protein-inhibitor interactions
Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures
Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element
Staphylococcus aureus is a common human bacterium that sometimes becomes pathogenic, causing serious infections. A key feature of S. aureus is its ability to acquire resistance to antibiotics. The presence of the staphylococcal cassette chromosome (SCC) element in serotypes of S. aureus has been confirmed using multiplex PCR assays. The SCC element is the only vector known to carry the mecA gene, which encodes methicillin resistance in S. aureus infections. Here, we report the genome sequence of a novel methicillin-sensitive S. aureus (MSSA) strain: SCC-like MSSA463. This strain was originally erroneously serotyped as methicillin-resistant S. aureus in a clinical laboratory using multiplex PCR methods. We sequenced the genome of SCC-like MSSA463 using pyrosequencing techniques and compared it with known genome sequences of other S. aureus isolates. An open reading frame (CZ049; AB037671) was identified downstream of attL and attR inverted repeat sequences. Our results suggest that a lateral gene transfer occurred between S. aureus and other organisms, partially changing S. aureus infectivity. We propose that attL and attR inverted repeats in S. aureus serve as frequent insertion sites for exogenous genes.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000316747000011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701BiologySCI(E)PubMed0ARTICLE3268-2745
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
- …
