24 research outputs found

    The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae

    Get PDF
    Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced

    A Barcode Screen for Epigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyltransferase Complex in Histone Turnover

    Get PDF
    Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics

    Regulation of the DNA Damage Response and Gene Expression by the Dot1L Histone Methyltransferase and the 53Bp1 Tumour Suppressor

    Get PDF
    Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined.Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L⁻/⁻ and wild type cells are equally resistant to ionising radiation, whereas 53Bp1⁻/⁻/Dot1L⁻/⁻ cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1⁻/⁻ cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line.Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin

    Spt6 is a maintenance factor for centromeric CENP-A

    Get PDF
    Replication and transcription of genomic DNA requires partial disassembly of nucleosomes to allow progression of polymerases. This presents both an opportunity to remodel the underlying chromatin and a danger of losing epigenetic information. Centromeric transcription is required for stable incorporation of the centromere-specific histone dCENP-A in M/G1 phase, which depends on the eviction of previously deposited H3/H3.3-placeholder nucleosomes. Here we demonstrate that the histone chaperone and transcription elongation factor Spt6 spatially and temporarily coincides with centromeric transcription and prevents the loss of old CENP-A nucleosomes in both Drosophila and human cells. Spt6 binds directly to dCENP-A and dCENP-A mutants carrying phosphomimetic residues alleviate this association. Retention of phosphomimetic dCENP-A mutants is reduced relative to wildtype, while non-phosphorylatable dCENP-A retention is increased and accumulates at the centromere. We conclude that Spt6 acts as a conserved CENP-A maintenance factor that ensures long-term stability of epigenetic centromere identity during transcription-mediated chromatin remodeling

    Ten principles of heterochromatin formation and function

    Get PDF

    Epi-ID: Systematic and Direct Screening for Chromatin Regulators in Yeast by Barcode-ChIP-Seq

    No full text
    The assembly and regulation of chromatin requires coordinated activity of multiple mechanisms. Many factors feed into signaling networks that control the epigenome of a cell. It is this complexity that makes understanding the layers of epigenetic regulation a challenge. Genetic screens have been indispensable for studying chromatin processes. However, they can be laborious and the readout for chromatin changes is often indirect. Epi-ID is a screening strategy in yeast that enables the direct assessment of chromatin status in thousands of gene mutants in parallel. Epi-ID takes advantage of DNA sequences called DNA barcodes that are introduced into a library of yeast knockout mutants at a common chromosomal location in the genome. Chromatin immunoprecipitation on pools of barcoded mutant strains followed by barcode counting by high throughput sequencing will report on the abundance of the chromatin mark of interest in each mutant strain. Epi-ID is applicable to a wide range of chromatin proteins and modifications that are present and can be immunoprecipitated at or around the barcoded region
    corecore