253 research outputs found

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Performance of CMS hadron calorimeter timing and synchronization using test beam, cosmic ray, and LHC beam data

    Get PDF
    This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Time measurement performance results are presented from test beam data taken in the years 2004 and 2006. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. Time synchronization and out-of-time background rejection results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. The inter-channel synchronization is measured to be within ±2 ns

    Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for <it>in vitro </it>studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for <it>in vitro </it>approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for <it>in vitro </it>investigation of oxygen deficiency.</p> <p>Methods</p> <p>Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. <sup>14</sup>C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system.</p> <p>Results</p> <p>The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. <sup>14</sup>C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation.</p> <p>Conclusion</p> <p>The results of our study indicate that the enzymatic model can find application for <it>in vitro </it>investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.</p

    Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants

    Get PDF
    The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants

    Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders

    Full text link
    BACKGROUND: A new autoantibody (termed NMO-IgG, or AQP4-Ab) has recently been described in patients with neuromyelitis optica (NMO) and its formes frustes, longitudinally extensive transverse myelitis (LETM) and recurrent optic neuritis (rON). However, AQP4-Ab has been found also in patients with co-existing rheumatic diseases such as systemic lupus erythematosus (SLE) or Sjogren's syndrome (SS), conditions which are characterized by broad, polyspecific B cell activation. OBJECTIVES: In this study, we aimed at evaluating the syndrome specificity and frequency of AQP4-Ab in patients with rheumatic diseases and neurological symptoms. METHODS: For this purpose, serum samples from 109 neurological patients with established connective tissue disorders (CTD) (n = 54), possible CTD (n = 42), or vasculitis (n = 13) were analysed for the presence of AQP4-Ab by a cell-based assay employing recombinant human AQP4. RESULTS: AQP4-Ab was detectable in 31/40 (78%) patients with CTD and NMO spectrum disorders (median titre, 1:1000) but in none of the samples obtained from patients with CTD or vasculitis and neurological disorders other than NMO, LETM, or rON (n = 69). CONCLUSION: The high syndrome specificity of the antibody for neuromyelitis optica spectrum disorders (NMOSDs) in patients with CTD supports the concept of AQP4-Ab being involved in the pathogenesis of these neurological conditions, and argues against AQP4-Ab simply being part of the polyclonal B cell activation generally associated with rheumatic diseases. Moreover, the finding that AQP4-Ab is present in patients with CTD and co-existing NMOSD with approximately the same frequency as in patients without CTD strengthens the case of CTD and AQP4-Ab positive NMOSD representing two co-existing yet distinct entities in the majority of patients

    A Mathematical Methodology for Determining the Temporal Order of Pathway Alterations Arising during Gliomagenesis

    Get PDF
    Human cancer is caused by the accumulation of genetic alterations in cells. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and thus represent promising targets for therapeutic intervention. We have previously described a computational approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to determine the temporal sequence of genetic alterations during tumorigenesis from cross-sectional genomic data of tumors at their fully transformed stage. Since alterations within a set of genes belonging to a particular signaling pathway may have similar or equivalent effects, we applied a pathway-based systems biology approach to the RESIC methodology. This method was used to determine whether alterations of specific pathways develop early or late during malignant transformation. When applied to primary glioblastoma (GBM) copy number data from The Cancer Genome Atlas (TCGA) project, RESIC identified a temporal order of pathway alterations consistent with the order of events in secondary GBMs. We then further subdivided the samples into the four main GBM subtypes and determined the relative contributions of each subtype to the overall results: we found that the overall ordering applied for the proneural subtype but differed for mesenchymal samples. The temporal sequence of events could not be identified for neural and classical subtypes, possibly due to a limited number of samples. Moreover, for samples of the proneural subtype, we detected two distinct temporal sequences of events: (i) RAS pathway activation was followed by TP53 inactivation and finally PI3K2 activation, and (ii) RAS activation preceded only AKT activation. This extension of the RESIC methodology provides an evolutionary mathematical approach to identify the temporal sequence of pathway changes driving tumorigenesis and may be useful in guiding the understanding of signaling rearrangements in cancer development

    Effect of Supplementation with Zinc and Other Micronutrients on Malaria in Tanzanian Children: A Randomised Trial

    Get PDF
    Hans Verhoef and colleagues report findings from a randomized trial conducted among Tanzanian children at high risk for malaria. Children in the trial received either daily oral supplementation with either zinc alone, multi-nutrients without zinc, multi-nutrients with zinc, or placebo. The investigators did not find evidence from this study that zinc or multi-nutrients protected against malaria episodes

    Recurring Ethanol Exposure Induces Disinhibited Courtship in Drosophila

    Get PDF
    Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity

    Concentration-Dependent, Size-Independent Toxicity of Citrate Capped AuNPs in Drosophila melanogaster

    Get PDF
    The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size
    corecore