53 research outputs found

    Impact of short-term dietary modification on postprandial oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently reported that short-term (21-day) dietary modification in accordance with a stringent vegan diet (i.e., a Daniel Fast) lowers blood lipids as well as biomarkers of oxidative stress. However, this work only involved measurements obtained in a fasted state. In the present study, we determined the postprandial response to a high-fat milkshake with regards to blood triglycerides (TAG), biomarkers of oxidative stress, and hemodynamic variables before and following a 21-day Daniel Fast.</p> <p>Methods</p> <p>Twenty-two subjects (10 men and 12 women; aged 35 ± 3 years) completed a 21-day Daniel Fast. To induce oxidative stress, a milkshake (fat = 0.8 g·kg<sup>-1</sup>; carbohydrate = 1.0 g·kg<sup>-1</sup>; protein = 0.25 g·kg<sup>-1</sup>) was consumed by subjects on day one and day 22 in a rested and 12-hour fasted state. Before and at 2 and 4 h after consumption of the milkshake, heart rate (HR) and blood pressure were measured. Blood samples were also collected at these times and analyzed for TAG, malondialdehyde (MDA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), advanced oxidation protein products (AOPP), nitrate/nitrite (NOx), and Trolox Equivalent Antioxidant Capacity (TEAC).</p> <p>Results</p> <p>A time effect was noted for HR (<it>p </it>= 0.006), with values higher at 2 hr post intake of the milkshake as compared to pre intake (<it>p </it>< 0.05). Diastolic blood pressure was lower post fast as compared to pre fast (<it>p </it>= 0.02), and a trend for lower systolic blood pressure was noted (<it>p </it>= 0.07). Time effects were noted for TAG (<it>p </it>= 0.001), MDA (<it>p </it>< 0.0001), H<sub>2</sub>O<sub>2 </sub>(<it>p </it>< 0.0001), AOPP (<it>p </it>< 0.0001), and TEAC (<it>p </it>< 0.0001); all concentrations were higher at 2 h and 4 h post intake compared to pre intake, except for TEAC, which was lower at these times (<it>p </it>< 0.05). A condition effect was noted for NOx (<it>p </it>= 0.02), which was higher post fast as compared to pre fast. No pre/post fast × time interactions were noted (<it>p </it>> 0.05), with the area under the curve from pre to post fast reduced only slightly for TAG (11%), MDA (11%), H<sub>2</sub>O<sub>2 </sub>(8%), and AOPP (12%), with a 37% increase noted for NOx.</p> <p>Conclusion</p> <p>Partaking in a 21-day Daniel Fast does not result in a statistically significant reduction in postprandial oxidative stress. It is possible that a longer time course of adherence to the Daniel Fast eating plan may be needed to observe significant findings.</p

    Early B-cell Factor gene association with multiple sclerosis in the Spanish population

    Get PDF
    BACKGROUND: The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. METHODS: The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. RESULTS: Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). CONCLUSION: Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them

    The node of Ranvier in CNS pathology

    Get PDF

    Promoting remyelination in multiple sclerosis-recent advances

    Get PDF
    We review the current state of knowledge of remyelination in multiple sclerosis (MS), concentrating on advances in the understanding of the pathology and the regenerative response, and we summarise progress on the development of new therapies to enhance remyelination aimed at reducing progressive accumulation of disability in MS. We discuss key target pathways identified in experimental models, as although most identified targets have not yet progressed to the stage of being tested in human clinical trials, they may provide treatment strategies for demyelinating diseases in the future. Finally, we discuss some of the problems associated with testing this class of drugs, where they might fit into the therapeutic arsenal and the gaps in our knowledge

    The node of Ranvier in CNS pathology.

    Get PDF
    Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K(+) channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders

    The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation

    No full text
    Schwann cells are a regenerative cell type. Following nerve injury, a differentiated myelinating Schwann cell can dedifferentiate and regain the potential to proliferate. These cells then redifferentiate during the repair process. This behaviour is important for successful axonal repair, but the signalling pathways mediating the switch between the two differentiation states remain unclear. Sustained activation of the Ras/Raf/ERK cascade in primary cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. We therefore investigated its effects on the differentiation state of Schwann cells. Surprisingly, we found that Ras/Raf/ERK signalling drives the dedifferentiation of Schwann cells even in the presence of normal axonal signalling. Furthermore, nerve wounding in vivo results in sustained ERK signalling in associated Schwann cells. Elevated Ras signalling is thought to be important in the development of Schwann cell-derived tumours in neurofibromatosis type 1 patients. Our results suggest that the effects of Ras signalling on the differentiation state of Schwann cells may be important in the pathogenesis of these tumours
    corecore