8 research outputs found
A Simple Explanation for DAMA with Moderate Channeling
We consider the possibility that the DAMA signal arises from channeled events
in simple models where the dark matter interaction with nuclei is suppressed at
small momenta. As with the standard WIMP, these models have two parameters (the
dark matter mass and the size of the cross-section), without the need to
introduce an additional energy threshold type of parameter. We find that they
can be consistent with channeling fractions as low as about ~ 15%, so long as
at least ~70% of the nuclear recoil energy for channeled events is deposited
electronically. Given that there are reasons not to expect very large
channeling fractions, these scenarios make the channeling explanation of DAMA
much more compelling.Comment: 6 pages, 2 figure
Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with NaI(Tl) crystal Detectors
Limits on the cross section for weakly interacting massive particles (WIMPs)
scattering off nucleons in the NaI(Tl) detectors at the Yangyang Underground
Laboratory are obtained with a 2967.4 kg*day data exposure. Nuclei recoiling
are identified by the pulse shape of scintillating photon signals. Data are
consistent with no nuclear recoil hypothesis, and 90% confidence level upper
limits are set. These limits partially exclude the DAMA/LIBRA region of
WIMP-sodium interaction with the same NaI(Tl) target detector. This 90%
confidence level upper limit on WIMP-nucleon spin-independent cross section is
3.26*10^-4 pb for a WIMP mass at 10 GeV/c^2
Implications for the Constrained MSSM from a new prediction for b to s gamma
We re-examine the properties of the Constrained MSSM in light of updated
constraints, paying particular attention to the impact of the recent
substantial shift in the Standard Model prediction for BR(B to X_s gamma). With
the help of a Markov Chain Monte Carlo scanning technique, we vary all relevant
parameters simultaneously and derive Bayesian posterior probability maps. We
find that the case of \mu>0 remains favored, and that for \mu<0 it is
considerably more difficult to find a good global fit to current constraints.
In both cases we find a strong preference for a focus point region. This leads
to improved prospects for detecting neutralino dark matter in direct searches,
while superpartner searches at the LHC become more problematic, especially when
\mu<0. In contrast, prospects for exploring the whole mass range of the
lightest Higgs boson at the Tevatron and the LHC remain very good, which
should, along with dark matter searches, allow one to gain access to the
otherwise experimentally challenging focus point region. An alternative measure
of the mean quality-of-fit which we also employ implies that present data are
not yet constraining enough to draw more definite conclusions. We also comment
on the dependence of our results on the choice of priors and on some other
assumptions.Comment: JHEP versio
Dark matter direct-detection experiments
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed
Limits on interactions between weakly interacting massive particles and nucleons obtained with NaI(Tl) crystal detectors
Limits on the cross section for weakly interacting massive particles (WIMPs) elastic scattering on nuclei in NaI(Tl) detectors at the Yangyang Underground Laboratory are obtained from a 2967.4 kg·day data exposure. The nuclei recoiling from the scattering process are identified by the pulse shape of the scintillation light signals that they produce. The data are consistent with a no nuclear-recoil hypothesis, and WIMP-mass-dependent 90% confidence-level upper-limits are set on WIMP-nuclei elastic scattering cross sections. These limits partially exclude the DAMA/LIBRA allowed region for WIMP-sodium interactions with the same NaI(Tl) target material. The 90% confidence level upper limit on the WIMP-nucleon spin-independent cross section is 3.26×10 −4 pb for a WIMP mass of 10 GeV/c 2 . © 2019, The Author(s)11Nsciescopu
