157 research outputs found
Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men
The effect of duration-matched concurrent exercise training (CET) (50% resistance (RET) and 50% endurance (EET) training) on physiological training outcomes in untrained middle-aged men remains to be elucidated. Forty-seven men (age, 48.1 ± 6.8 years; body mass index, 30.4 ± 4.1 kg·m-2) were randomized into 12-weeks of EET (40-60 min of cycling), RET (10 exercises; 3-4 sets × 8-10 repetitions), CET (50% serial completion of RET and EET), or control condition. The following were determined: intervention-based changes in fitness and strength; abdominal visceral adipose tissue (VAT), total body fat (TB-FM) and fat-free (TB-FFM) mass; plasma cytokines (C-reactive protein (CRP), tumor necrosis factor-α (TNFα) interleukin-6 (IL-6)); muscle protein content of p110α and glucose transporter 4 (GLUT4); mRNA expression of GLUT4, peroxisome proliferator-activated receptor-γ coactivator-1α-β, cytochrome c oxidase, hexokinase II, citrate synthase; oral glucose tolerance; and estimated insulin sensitivity. CET promoted commensurate improvements of aerobic capacity and muscular strength and reduced VAT and TB-FM equivalently to EET and RET (p 0.05). EET reduced area under the curve for glucose, insulin, and C-peptide, whilst CET and RET respectively reduced insulin and C-peptide, and C-peptide only (p 0.05). In middle-aged men, 12 weeks of durationmatched CET promoted commensurate changes in fitness and strength, abdominal VAT, plasma cytokines and insulin sensitivity, and an equidistant glucose tolerance response to EET and RET; despite no change of measured muscle mechanisms associative to insulin action, glucose transport, and mitochondrial function
Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?
In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice
Influence of training status on high-intensity intermittent performance in response to β-alanine supplementation
Recent investigations have suggested that highly trained athletes may be less responsive to the ergogenic effects of β-alanine (BA) supplementation than recreationally active individuals due to their elevated muscle buffering capacity. We investigated whether training status influences the effect of BA on repeated Wingate performance. Forty young males were divided into two groups according to their training status (trained: T, and non-trained: NT cyclists) and were randomly allocated to BA and a dextrose-based placebo (PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA (6.4 g day-1 ) or PL was ingested for 4 weeks, with participants completing four 30-s lower-body Wingate bouts, separated by 3 min, before and after supplementation. Total work done was significantly increased following supplementation in both NTBA (p = 0.03) and TBA (p = 0.002), and it was significantly reduced in NTPL (p = 0.03) with no difference for TPL (p = 0.73). BA supplementation increased mean power output (MPO) in bout 4 for the NTBA group (p = 0.0004) and in bouts 1, 2 and 4 for the TBA group (p ≤ 0.05). No differences were observed in MPO for NTPL and TPL. BA supplementation was effective at improving repeated high-intensity cycling performance in both trained and non-trained individuals, highlighting the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
"Particle Informatics": Advancing Our Understanding of Particle Properties through Digital Design
We introduce a combination of existing and novel approaches to the assessment and prediction of particle properties intrinsic to the formulation and manufacture of pharmaceuticals. Naturally following on from established solid form informatics methods, we return to the drug lamotrigine, re-evaluating its context in the Cambridge Structural Database (CSD). We then apply predictive digital design tools built around the CSD-System suite of software, including Synthonic Engineering methods that focus on intermolecular interaction energies, to analyze and understand important particle properties and their effects on several key stages of pharmaceutical manufacturing. We present a new, robust workflow that brings these approaches together to build on the knowledge gained from each step and explain how this knowledge can be combined to provide resolutions at decision points encountered during formulation design and manufacturing processes
Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis
<p>Abstract</p> <p>Background</p> <p>Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, <it>Pocillopora damicornis</it>, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, <it>P. damicornis </it>is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform.</p> <p>Description</p> <p>Both the raw reads (n = 1, 116, 551) and the assembled contigs (n = 70, 786; mean length = 836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase <url>http://www.PocilloporaBase.org</url>. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae.</p> <p>Conclusions</p> <p><it>P. damicornis </it>now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase <url>http://www.PocilloporaBase.org</url>, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.</p
Population distribution and burden of acute gastrointestinal illness in British Columbia, Canada
BACKGROUND: In developed countries, gastrointestinal illness (GI) is typically mild and self-limiting, however, it has considerable economic impact due to high morbidity. METHODS: The magnitude and distribution of acute GI in British Columbia (BC), Canada was evaluated via a cross-sectional telephone survey of 4,612 randomly selected residents, conducted from June 2002 to June 2003. Respondents were asked if they had experienced vomiting or diarrhoea in the 28 days prior to the interview. RESULTS: A response rate of 44.3% was achieved. A monthly prevalence of 9.2% (95%CI 8.4 – 10.0), an incidence rate of 1.3 (95% CI 1.1–1.4) episodes of acute GI per person-year, and an average probability that an individual developed illness in the year of 71.6% (95% CI 68.0–74.8), weighted by population size were observed. The average duration of illness was 3.7 days, translating into 19.2 million days annually of acute GI in BC. CONCLUSION: The results corroborate those from previous Canadian and international studies, highlighting the substantial burden of acute GI
Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide
Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation
Invasive predators can exert strong selection on native populations. If selection is strong enough, populations could lose the phenotypic variation caused by adaptation to heterogeneous environments. We compare frog tadpoles prior to and 14 years following invasion by crayfish. Prior to the invasion, populations differed in their intrinsic developmental rate, with tadpoles from cold areas reaching metamorphosis sooner than those from warm areas. Following the invasion, tadpoles from invaded populations develop faster than those from non-invaded populations. This ontogenetic shift overwhelmed the intraspecific variation between populations in a few generations, to the point where invaded populations develop at a similar rate regardless of climate. Rapid development can have costs, as fast-developing froglets have a smaller body size and poorer jumping performance, but compensatory growth counteracts some costs of development acceleration. Strong selection by invasive species can disrupt local adaptations by dampening intraspecific phenotypic variation, with complex consequences on lifetime fitness
Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)
Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on the parasite side of the interaction. Our findings shed new light on how and why invertebrate immunity develops
- …
