1,285 research outputs found

    Clique-width : harnessing the power of atoms.

    Get PDF
    Many NP-complete graph problems are polynomial-time solvable on graph classes of bounded clique-width. Several of these problems are polynomial-time solvable on a hereditary graph class G if they are so on the atoms (graphs with no clique cut-set) of G . Hence, we initiate a systematic study into boundedness of clique-width of atoms of hereditary graph classes. A graph G is H-free if H is not an induced subgraph of G, and it is (H1,H2) -free if it is both H1 -free and H2 -free. A class of H-free graphs has bounded clique-width if and only if its atoms have this property. This is no longer true for (H1,H2) -free graphs, as evidenced by one known example. We prove the existence of another such pair (H1,H2) and classify the boundedness of clique-width on (H1,H2) -free atoms for all but 18 cases

    Well-quasi-ordering versus clique-width : new results on bigenic classes.

    Get PDF
    Daligault, Rao and Thomassé conjectured that if a hereditary class of graphs is well-quasi-ordered by the induced subgraph relation then it has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this conjecture is not true for infinitely defined classes. For finitely defined classes the conjecture is still open. It is known to hold for classes of graphs defined by a single forbidden induced subgraph H, as such graphs are well-quasi-ordered and are of bounded clique-width if and only if H is an induced subgraph of P4P4. For bigenic classes of graphs i.e. ones defined by two forbidden induced subgraphs there are several open cases in both classifications. We reduce the number of open cases for well-quasi-orderability of such classes from 12 to 9. Our results agree with the conjecture and imply that there are only two remaining cases to verify for bigenic classes

    Fine-grained complexity of temporal problems

    Get PDF
    Expressive temporal reasoning formalisms are essential for AI. One family of such formalisms consists of disjunctive extensions of the simple temporal problem (STP). Such extensions are well studied in the literature and they have many important applications. It is known that deciding satisfiability of disjunctive STPs is NP-hard, while the fine-grained complexity of such problems is virtually unexplored. We present novel algorithms that exploit structural properties of the solution space and prove, assuming the Exponential-Time Hypothesis, that their worst-case time complexity is close to optimal. Among other things, we make progress towards resolving a long-open question concerning whether Allen's interval algebra can be solved in single-exponential time, by giving a 2^{O(nloglog(n))} algorithm for the special case of unit-length intervals

    Bounding clique-width via perfect graphs

    Get PDF
    We continue the study into the clique-width of graph classes defined by two forbidden induced graphs. We present three new classes of bounded clique-width and one of unbounded clique-width. The four new graph classes have in common that one of their two forbidden induced subgraphs is the diamond. To prove boundedness of clique-width for the first three cases we develop a technique based on bounding clique covering number in combination with reduction to subclasses of perfect graphs. We extend our proof of unboundedness for the fourth case to show that Graph Isomorphism is Graph Isomorphism-complete on the same graph class

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Tree Pivot-Minors and Linear Rank-Width

    Get PDF

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore