154 research outputs found
Early influences on cardiovascular and renal development
The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh
Plasma irisin is elevated in type 2 diabetes and is associated with increased E-selectin levels
BACKGROUND: Irisin is a hormone released mainly from skeletal muscle after exercise which increases adipose tissue energy expenditure. Adipocytes can also release irisin after exercise, acting as a local adipokine to induce white adipose tissue to take on a brown adipose tissue-like phenotype, suggesting that irisin and its receptor may represent a novel molecular target for the treatment of obesity and obesity-related diabetes. Previous reports provide conflicting evidence regarding circulating irisin levels in patients with type 2 diabetes (T2DM). METHODS: This study investigated plasma irisin concentrations in 79 T2DM individuals, assessing potential associations with measures of segmental body composition, markers of endothelial dysfunction and peripheral blood mononuclear cell telomere length (TL). RESULTS: Resting, overnight-fasted plasma irisin levels were significantly higher in this group of T2DM patients compared with levels we previously reported in healthy volunteers (p < 0.001). Moreover, plasma irisin displayed a positive correlation with body mass index (p = 0.04), body fat percentage (p = 0.03), HbA1c (p = 0.03) and soluble E-selectin (p < 0.001). A significant negative association was observed between plasma irisin and visceral adiposity (p = 0.006) in T2DM patients. Multiple regression analysis revealed that circulating soluble E-selectin levels could be predicted by plasma irisin (p = 0.004). Additionally, cultured human umbilical vein endothelial cells (HUVEC) exposed to 200 ng/ml irisin for 4 h showed a significant fourfold increase in E-selectin and 2.5-fold increase in ICAM-1 gene expression (p = 0.001 and p = 0.015 respectively), and there was a 1.8-fold increase in soluble E-selectin in conditioned media (p < 0.05). CONCLUSION: These data suggest that elevated plasma irisin in T2DM is associated with indices of adiposity, and that irisin may be involved in pro-atherogenic endothelial disturbances that accompany obesity and T2DM. Accordingly, irisin may constitute a potentially novel therapeutic opportunity in the field of obesity and cardiovascular diabetology
Adjuvant Treatment after Surgery in Stage IIIA Endometrial Adenocarcinoma
PURPOSE: We evaluated the role of adjuvant therapy in stage IIIA endometrioid adenocarcinoma patients who underwent surgery followed by radiotherapy (RT) alone or chemoradiotherapy (CTRT) according to risk group.
MATERIALS AND METHODS: A multicenter retrospective study was conducted including patients with surgical stage IIIA endometrial cancertreated by radical surgery and adjuvant RT or CTRT. Disease-free survival (DFS) and overall survival (OS) were analyzed.
RESULTS: Ninety-three patients with stage IIIA disease were identified. Nineteen patients (20.4%) experienced recurrence, mostly distant metastasis (17.2%). Combined CTRT did not affect DFS (74.1% vs. 82.4%, p=0.130) or OS (96.3% vs. 91.9%, p=0.262) in stage IIIA disease compared with RT alone. Patients with age >/= 60 years, grade G2/3, and lymphovascular space involvement had a significantly worse DFS and those variables were defined as risk factors. The high-risk group showed a significant reduction in 5-year DFS (>/= 2 risk factors) (49.0% vs. 88.0%, p < 0.001) compared with the low-risk group (< 2). Multivariate analysis confirmed that more than one risk factor was the only predictor of worse DFS (hazard ratio, 5.45: 95% confidence interval, 2.12 to 13.98: p < 0.001). Of patients with no risk factors, a subset treated with RT alone showed an excellent 5-year DFS and OS (93.8% and 100%, respectively).
CONCLUSION: We identified a low-risk subset of stage IIIA endometrioid adenocarcinoma patients who might be reasonable candidates for adjuvant RT alone. Further randomized studies are needed to determine which subset might benefit from combined CTRT
Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1
The spectrum of human congenital malformations known as DiGeorge syndrome (DGS) is replicated in mice by mutation of Tbx1. Vegfa has been proposed as a modifier of DGS, based in part on the occurrence of comparable phenotypes in Tbx1 and Vegfa mutant mice. Many additional genes have been shown to cause DGS-like phenotypes in mice when mutated; these generally intersect in some manner with Tbx1, and therefore impact the same developmental processes in which Tbx1 itself is involved. In this study, using Tie2Cre, we show that endothelial-specific mutation of the gene encoding the VEGFA coreceptor neuropilin-1 (Nrp1) also replicates the most prominent terminal phenotypes that typify DGS. However, the developmental etiologies of these defects are fundamentally different from those caused by absence of TBX1. In Tie2Cre/Nrp1 mutants, initial pharyngeal organization is normal but subsequent pharyngeal organ growth is impaired, second heart field differentiation is normal but cardiac outflow tract cushion organization is distorted, neural crest cell migration is normal, and palatal mesenchyme proliferation is impaired with no change in apoptosis. Our results demonstrate that impairment of VEGF-dependent endothelial pathways leads to a spectrum of DiGeorge syndrome-type malformations, through processes that are distinguishable from those controlled by Tbx1
GAMETOPHYTE DEFECTIVE 1, a Putative Subunit of RNases P/MRP, Is Essential for Female Gametogenesis and Male Competence in Arabidopsis
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants
New developments in the pathology of malignant lymphoma: a review of the literature published from August to December 2008
Overexpression of DNA Polymerase Zeta Reduces the Mitochondrial Mutability Caused by Pathological Mutations in DNA Polymerase Gamma in Yeast
In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one
Early feeding patterns among Mexican babies: findings from the 2012 National Health and Nutrition Survey and implications for health and obesity prevention
Engineered Models of Metastasis with Application to Study Cancer Biomechanics
Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types
Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA
The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism
- …
