20 research outputs found
The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water
We use numerical simulation to examine the possibility of a reversible
liquid-liquid transition in supercooled water and related systems. In
particular, for two atomistic models of water, we have computed free energies
as functions of multiple order parameters, where one is density and another
distinguishes crystal from liquid. For a range of temperatures and pressures,
separate free energy basins for liquid and crystal are found, conditions of
phase coexistence between these phases are demonstrated, and time scales for
equilibration are determined. We find that at no range of temperatures and
pressures is there more than a single liquid basin, even at conditions where
amorphous behavior is unstable with respect to the crystal. We find a similar
result for a related model of silicon. This result excludes the possibility of
the proposed liquid-liquid critical point for the models we have studied.
Further, we argue that behaviors others have attributed to a liquid-liquid
transition in water and related systems are in fact reflections of transitions
between liquid and crystal
Cardiovascular magnetic resonance in pericardial diseases
The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases
