349 research outputs found
WalkMore: a randomized controlled trial of pedometer-based interventions differing on intensity messages
Pedometer-based programs have elicited increased walking behaviors associated with improvements in blood pressure in sedentary/low active postmenopausal women, a population at increased risk of cardiovascular disease. Such programs typically encourage increasing the volume of physical activity with little regard for its intensity. Recent advances in commercially available pedometer technology now permit tracking of both steps/day and time in moderate (or greater) intensity physical activity on a daily basis. It is not known whether the dual message to increase steps/day while also increasing time spent at higher intensity walking will elicit additional improvements in blood pressure relative to a message to only focus on increasing steps/day. The purpose of this paper is to present the rationale, study design, and protocols employed in WalkMore, a 3-arm 3-month blinded and randomized controlled trial (RCT) designed to compare the effects of two community pedometer-based walking interventions (reflecting these separate and combined messages) relative to a control group on blood pressure in sedentary/low active post-menopausal women, a population at increased risk of cardiovascular disease. 120 sedentary/low active post-menopausal women (45-74 years of age) will be randomly assigned (computer-generated) to 1 of 3 groups: A) 10,000 steps/day (with no guidance on walking intensity/speed/cadence; BASIC intervention, n = 50); B) 10,000 steps/day and at least 30 minutes in moderate intensity (i.e., a cadence of at least 100 steps/min; ENHANCED intervention, n = 50); or a Control group (n = 20). An important strength of the study is the strict control and quantification of the pedometer-based physical activity interventions. The primary outcome is systolic blood pressure. Secondary outcomes include diastolic blood pressure, anthropometric measurements, fasting blood glucose and insulin, flow mediated dilation, gait speed, and accelerometer-determined physical activity and sedentary behavior. This study can make important contributions to our understanding of the relative benefits that walking volume and/or intensity may have on blood pressure in a population at risk of cardiovascular disease. ClinicalTrials.gov Record NCT01519583, January 18, 2012
Light-intensity physical activity and cardiometabolic biomarkers in US adolescents
BackgroundThe minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high) physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample.MethodsThe study is based on 1,731 adolescents, aged 12–19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100–799 counts/min), high light-intensity activity (800 counts/min to <4 METs) and moderate- to vigorous-intensity activity (≥4 METs, Freedson age-specific equation) were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of β-cell function (HOMA-%B) and insulin sensitivity (HOMA-%S) were also measured in a fasting sub-sample (n=807).ResultsAdjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18–0.01) mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94–0.39) mmHG lower diastolic blood pressure and 0.04 (0.001–0.07) mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73–1.35) mmHG lower systolic blood pressure, 5.49 (1.11–9.77)% lower waist circumference, 25.87 (6.08–49.34)% lower insulin, and 16.18 (4.92–28.53)% higher HOMA-%S.ConclusionsTime spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to vigorous-intensity activity had favorable associations with many cardiometabolic biomarkers. While increasing MVPA should still be a public health priority, further studies are needed to identify dose-response relationships for light-intensity activity thresholds to inform future recommendations and interventions for adolescents.</div
Physical activity guidelines and cardiovascular risk in children: a cross-sectional analysis to determine whether 60 minutes is enough
Background
Physical activity reduces cardiovascular mortality and morbidity. The World Health Organisation (WHO) recommends children engage in 60 min daily moderate-to-vigorous physical activity (MVPA). The effect of compliance with this recommendation on childhood cardiovascular risk has not been empirically tested. To evaluate whether achieving recommendations results in reduced composite-cardiovascular risk score (CCVR) in children, and to examine if vigorous PA (VPA) has independent risk-reduction effects.
Methods
PA was measured using accelerometry in 182 children (9–11 years). Subjects were grouped according to achievement of 60 min daily MVPA (active) or not (inactive). CCVR was calculated (sum of z-scores: DXA body fat %, blood pressure, VO2peak, flow mediated dilation, left ventricular diastolic function; CVR score ≥1SD indicated ‘higher risk’). The cohort was further split into quintiles for VPA and odds ratios (OR) calculated for each quintile.
Results
Active children (92 (53 boys)) undertook more MVPA (38 ± 11 min, P 0.05). CCVR in the lowest VPA quintile was significantly greater than the highest quintile (3.9 ± 0.6, P < 0.05), and the OR was 4.7 times higher.
Conclusion
Achievement of current guidelines has positive effects on body composition and cardiorespiratory fitness, but not CCVR. Vigorous physical activity appears to have beneficial effects on CVD risk, independent of moderate PA, implying a more prescriptive approach may be needed for future VPA guidelines
After the Ice Age: The Impact of Post-Glacial Dispersal on the Phylogeography of a Small Mammal, Muscardinus avellanarius
We used genetic tools to assess phylogeographic structure of the common dormouse (Muscardinus avellenarius) since the end of the last glacial maximum, to identify post-glacial dispersal routes and to describe population units for conservation. Comparative analysis of mitochondrial genes (Cytochrome b, 704 bp, D-loop, 506 bp) and one nuclear gene (Beta-Fibrinogen, 550 bp) was conducted to reconstruct the recent demographic history within and between UK and continental European populations. Our analysis indicated phylogeographic variation in the UK is similar in magnitude to that found in other regions of continental Europe and suggests a recent population expansion. We present evidence which supports a single post-glacial colonization into the UK. Dispersal time calculations, calibrated with geophysical events, are coincident with the start of the Holocene period, 7.5–11 kya, a time when geological evidence suggests temperatures were stable, woodland habitat was prevalent and a land bridge was present to allow the dispersal of small mammals into the UK. We discuss our findings in the context of the extant geographical genetic structure described here and in relation to conservation management of this threatened species
Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
Discrepancies between the medical record and the reports of patients with acute coronary syndrome regarding important aspects of the medical history
<p>Abstract</p> <p>Background</p> <p>Many critical treatment decisions are based on the medical history of patients with an acute coronary syndrome (ACS). Discrepancies between the medical history documented by a health professional and the patient's own report may therefore have important health consequences.</p> <p>Methods</p> <p>Medical histories of 117 patients with an ACS were documented. A questionnaire assessing the patient's health history was then completed by 62 eligible patients. Information about 13 health conditions with relevance to ACS management was obtained from the questionnaire and the medical record. Concordance between these two sources and reasons for discordance were identified.</p> <p>Results</p> <p>There was significant variation in agreement, from very poor in angina (kappa < 0) to almost perfect in diabetes (kappa = 0.94). Agreement was substantial in cerebrovascular accident (kappa = 0.76) and hypertension (kappa = 0.73); moderate in cocaine use (kappa = 0.54), smoking (kappa = 0.46), kidney disease (kappa = 0.52) and congestive heart failure (kappa = 0.54); and fair in arrhythmia (kappa = 0.37), myocardial infarction (kappa = 0.31), other cardiovascular diseases (kappa = 0.37) and bronchitis/pneumonia (kappa = 0.31). The odds of agreement was 42% higher among individuals with at least some college education (OR = 1.42; 95% CI, 1.00 - 2.01, p = 0.053). Listing of a condition in medical record but not in the questionnaire was a common cause of discordance.</p> <p>Conclusion</p> <p>Discrepancies in aspects of the medical history may have important effects on the care of ACS patients. Future research focused on identifying the most effective and efficient means to obtain accurate health information may improve ACS patient care quality and safety.</p
Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts
The protein serine/threonine kinase Akt, also known as protein kinase B (PKB), is arguably the most important signalling nexus in the cell. Akt integrates a plethora of extracellular signals to generate diverse outcomes, including proliferation, motility, growth, glucose homeostasis, survival, and cell death. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is the second most frequently mutated pathway in cancer, after p53, and mutations in components of this pathway are found in around 70% of breast cancers. Thus, understanding how Akt relays input signals to downstream effectors is critically important for the design of therapeutic strategies to combat breast cancer. In this review, we will discuss the various signals upstream of Akt that impact on its activity, how Akt integrates these signals and modulates the activity of downstream targets to control mammary gland development, and how mutations in components of the pathway result in breast cancer
Association of warfarin dose with genes involved in its action and metabolism
We report an extensive study of variability in genes encoding proteins that are believed to be involved in the action and biotransformation of warfarin. Warfarin is a commonly prescribed anticoagulant that is difficult to use because of the wide interindividual variation in dose requirements, the narrow therapeutic range and the risk of serious bleeding. We genotyped 201 patients for polymorphisms in 29 genes in the warfarin interactive pathways and tested them for association with dose requirement. In our study, polymorphisms in or flanking the genes VKORC1, CYP2C9, CYP2C18, CYP2C19, PROC, APOE, EPHX1, CALU, GGCX and ORM1-ORM2 and haplotypes of VKORC1, CYP2C9, CYP2C8, CYP2C19, PROC, F7, GGCX, PROZ, F9, NR1I2 and ORM1-ORM2 were associated with dose (P < 0.05). VKORC1, CYP2C9, CYP2C18 and CYP2C19 were significant after experiment-wise correction for multiple testing (P < 0.000175), however, the association of CYP2C18 and CYP2C19 was fully explained by linkage disequilibrium with CYP2C9*2 and/or *3. PROC and APOE were both significantly associated with dose after correction within each gene. A multiple regression model with VKORC1, CYP2C9, PROC and the non-genetic predictors age, bodyweight, drug interactions and indication for treatment jointly accounted for 62% of variance in warfarin dose. Weaker associations observed for other genes could explain up to ∼10% additional dose variance, but require testing and validation in an independent and larger data set. Translation of this knowledge into clinical guidelines for warfarin prescription will be likely to have a major impact on the safety and efficacy of warfarin. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00439-006-0260-8 and is accessible for authorized users
A latent growth curve model to estimate electronic screen use patterns amongst adolescents aged 10 to 17 years
Background: High quality, longitudinal data describing young people's screen use across a number of distinct forms of screen activity is missing from the literature. This study tracked multiple screen use activities (passive screen use, gaming, social networking, web searching) amongst 10- to 17-year-old adolescents across 24 months. Methods: This study tracked the screen use of 1948 Australian students in Grade 5 (n = 636), Grade 7 (n = 672), and Grade 9 (n = 640) for 24 months. At approximately six-month intervals, students reported their total screen time as well as time spent on social networking, passive screen use, gaming, and web use. Patterns of screen use were determined using latent growth curve modelling. Results: In the Grades 7 and 9 cohorts, girls generally reported more screen use than boys (by approximately one hour a day), though all cohorts of boys reported more gaming. The different forms of screen use were remarkably stable, though specific cohorts showed change for certain forms of screen activity. Conclusion: These results highlight the diverse nature of adolescent screen use and emphasise the need to consider both grade and sex in future research and policy
- …
