8,961 research outputs found
Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015
We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companion’s surface. Finally, we propose that an outflow driven by the radiation pressure from day ∼10 played an important role in the X-ray/optical evolution of the outburst.postprin
Flexible transistor active matrix array with all screen-printed electrodes
Flexible transistor active matrix array is fabricated on PEN substrate using all screen-printed gate, source and drain electrodes. Parylene-C and DNTT act as gate dielectric layer and semiconductor, respectively. The transistor possesses high mobility (0.33 cm2V-1 s-1), large on/off ratio (< 106) and low leakage current (10 pA). Active matrix array consists of 10×10 transistors were demonstrated. Transistors exhibited average mobility of 0.29 cm2V-1s-1 and on/off ratio larger than 104 in array form. In the transistor array, we achieve 75μm channel length and a size of 2 mm × 2 mm for each element in the array which indicates the current screen-printing method has large potential in large-area circuits and display applications. © 2013 SPIE.published_or_final_versio
Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13
NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ~65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u-band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ~2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ~65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.postprin
Clinical experience with lapatinib in patients with ErbB2-overexpressing metastatic breast cancer
Sharper and Simpler Nonlinear Interpolants for Program Verification
Interpolation of jointly infeasible predicates plays important roles in
various program verification techniques such as invariant synthesis and CEGAR.
Intrigued by the recent result by Dai et al.\ that combines real algebraic
geometry and SDP optimization in synthesis of polynomial interpolants, the
current paper contributes its enhancement that yields sharper and simpler
interpolants. The enhancement is made possible by: theoretical observations in
real algebraic geometry; and our continued fraction-based algorithm that rounds
off (potentially erroneous) numerical solutions of SDP solvers. Experiment
results support our tool's effectiveness; we also demonstrate the benefit of
sharp and simple interpolants in program verification examples
Evaluation of Dynamic Cell Processes and Behavior Using Video Bioinformatics Tools
Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and
morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant
software, a commercially available video bioinformatics tool, can be used to extract quantitative data on:
(1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and
(4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and
colonies. Time-lapse experiments in which different cell types were subjected to various chemical
exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem
cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels).
Colony and single cell migration were studied by measuring total displacement (distance between the
starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production,
cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with
various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural
stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected
daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant
software can be used to evaluate biological processes in living cells, and the protocols developed in
this project can be applied to basic research and toxicological studies, or to monitor quality control in
culture facilities
New zebrafish models of neurodegeneration
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings
Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up
Development of interfering RNA agents to inhibit SARS-associated coronavirus infection and replication.
published_or_final_versio
Potent inhibition of SARS-associated coronavirus (SCoV) infection and replication by type I interferons (IFN-α/β) but not by type II interferon (IFN-γ)
We sought to investigate the anti-severe acute respiratory syndrome (SARS)-associated coronavirus (SCoV) activities of type I (α and β) and type II (γ) interferons (IFN) in vitro. Type I IFNs protected cells from cytopathic effects (CPE) induced by SCoV, and inhibited viral genomic RNA replication in FRhk-4 cells (measured by quantitative RT-PCR) in a dose-dependent manner. Intracellular viral RNA copies were reduced 50% by IFN-α at a concentration of 25 U/ml and by IFN-β at a concentration of 14 U/ml. IFN-γ had fewer effects on inhibition of viral infection and replication. The type I IFN receptor signaling pathway in host cells is mainly involved in the inhibition of SCoV infection and replication. Type I IFNs could be used as potential agents for anti-SARS treatment.published_or_final_versio
- …
