217 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats

    Get PDF
    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes

    Progression of duodenal adenomatosis in familial adenomatous polyposis: due to ageing of subjects and advances in technology

    Get PDF
    Familial adenomatous polyposis patients are at risk of duodenal cancer. Surveillance is indicated and the extent of duodenal polyposis is quantified by the Spigelman staging system. We noticed an impressive increase in high Spigelman stages over the years and therefore decided to investigate whether this increase might be due to the time-lapse since the inception of surveillance or related to improvements in endoscopic imaging and/or changes in dysplasia-reporting. Patients who were investigated by the same endoscopist since 1980 in at least 2 different episodes of technical improvements were eligible. The period 1980–2009 was divided into 4 episodes using the following landmarks: replacement of fibre-endoscopes by video-endoscopes in 1987, change in processors in 1995, change in image resolution in 2000, and change in dysplasia-reporting in 2006. An increase in Spigelman stages from low stages (0–II 100%) to high stages (III 28.1%, IV 43.8%) was seen (median follow-up: 19.5 years). In patients who progressed, a median of 4 years elapsed before progression by one stage occurred and 7 years to progress by two stages. In a mixed-model analysis, both time-lapse and technical improvements were determinant factors for duodenal disease progression. When both factors were introduced in the model, the time-lapse as well as the change in image resolution and dysplasia-ranking contributed consistently in increasing Spigelman scores and stages. The impressive increase in severity of duodenal polyposis is determined by time-lapse, technological advances and change in dysplasia-reporting. These results might call for a revised Spigelman classification

    Inhibition of MLC Phosphorylation Restricts Replication of Influenza Virus—A Mechanism of Action for Anti-Influenza Agents

    Get PDF
    Influenza A viruses are a severe threat worldwide, causing large epidemics that kill thousands every year. Prevention of influenza infection is complicated by continuous viral antigenic changes. Newer anti-influenza agents include MEK/ERK and protein kinase C inhibitors; however, the downstream effectors of these pathways have not been determined. In this study, we identified a common mechanism for the inhibitory effects of a significant group of anti-influenza agents. Our studies showed that influenza infection activates a series of signaling pathways that converge to induce myosin light chain (MLC) phosphorylation and remodeling of the actin cytoskeleton. Inhibiting MLC phosphorylation by blocking RhoA/Rho kinase, phospholipase C/protein kinase C, and HRas/Raf/MEK/ERK pathways with the use of genetic or chemical manipulation leads to the inhibition of influenza proliferation. In contrast, the induction of MLC phosphorylation enhances influenza proliferation, as does activation of the HRas/Raf/MEK/ERK signaling pathway. This effect is attenuated by inhibiting MLC phosphorylation. Additionally, in intracellular trafficking studies, we found that the nuclear export of influenza ribonucleoprotein depends on MLC phosphorylation. Our studies provide evidence that modulation of MLC phosphorylation is an underlying mechanism for the inhibitory effects of many anti-influenza compounds

    Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs

    Get PDF
    Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage

    Genome-Scale Identification Method Applied to Find Cryptic Aminoglycoside Resistance Genes in Pseudomonas aeruginosa

    Get PDF
    BACKGROUND:The ability of bacteria to rapidly evolve resistance to antibiotics is a critical public health problem. Resistance leads to increased disease severity and death rates, as well as imposes pressure towards the discovery and development of new antibiotic therapies. Improving understanding of the evolution and genetic basis of resistance is a fundamental goal in the field of microbiology. RESULTS:We have applied a new genomic method, Scalar Analysis of Library Enrichments (SCALEs), to identify genomic regions that, given increased copy number, may lead to aminoglycoside resistance in Pseudomonas aeruginosa at the genome scale. We report the result of selections on highly representative genomic libraries for three different aminoglycoside antibiotics (amikacin, gentamicin, and tobramycin). At the genome-scale, we show significant (p<0.05) overlap in genes identified for each aminoglycoside evaluated. Among the genomic segments identified, we confirmed increased resistance associated with an increased copy number of several genomic regions, including the ORF of PA5471, recently implicated in MexXY efflux pump related aminoglycoside resistance, PA4943-PA4946 (encoding a probable GTP-binding protein, a predicted host factor I protein, a delta 2-isopentenylpyrophosphate transferase, and DNA mismatch repair protein mutL), PA0960-PA0963 (encoding hypothetical proteins, a probable cold shock protein, a probable DNA-binding stress protein, and aspartyl-tRNA synthetase), a segment of PA4967 (encoding a topoisomerase IV subunit B), as well as a chimeric clone containing two inserts including the ORFs PA0547 and PA2326 (encoding a probable transcriptional regulator and a probable hypothetical protein, respectively). CONCLUSIONS:The studies reported here demonstrate the application of new a genomic method, SCALEs, which can be used to improve understanding of the evolution of antibiotic resistance in P. aeruginosa. In our demonstration studies, we identified a significant number of genomic regions that increased resistance to multiple aminoglycosides. We identified genetic regions that include open reading frames that encode for products from many functional categories, including genes related to O-antigen synthesis, DNA repair, and transcriptional and translational processes

    Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Get PDF
    Background: Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results: In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)- PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions: This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago

    Cerebrospinal Fluid Space Alterations in Melancholic Depression

    Get PDF
    Melancholic depression is a biologically homogeneous clinical entity in which structural brain alterations have been described. Interestingly, reports of structural alterations in melancholia include volume increases in Cerebro-Spinal Fluid (CSF) spaces. However, there are no previous reports of CSF volume alterations using automated whole-brain voxel-wise approaches, as tissue classification algorithms have been traditionally regarded as less reliable for CSF segmentation. Here we aimed to assess CSF volumetric alterations in melancholic depression and their clinical correlates by means of a novel segmentation algorithm (‘new segment’, as implemented in the software Statistical Parametric Mapping-SPM8), incorporating specific features that may improve CSF segmentation. A three-dimensional Magnetic Resonance Image (MRI) was obtained from seventy patients with melancholic depression and forty healthy control subjects. Although imaging data were pre-processed with the ‘new segment’ algorithm, in order to obtain a comparison with previous segmentation approaches, tissue segmentation was also performed with the ‘unified segmentation’ approach. Melancholic patients showed a CSF volume increase in the region of the left Sylvian fissure, and a CSF volume decrease in the subarachnoid spaces surrounding medial and lateral parietal cortices. Furthermore, CSF increases in the left Sylvian fissure were negatively correlated with the reduction percentage of depressive symptoms at discharge. None of these results were replicated with the ‘unified segmentation’ approach. By contrast, between-group differences in the left Sylvian fissure were replicated with a non-automated quantification of the CSF content of this region. Left Sylvian fissure alterations reported here are in agreement with previous findings from non-automated CSF assessments, and also with other reports of gray and white matter insular alterations in depressive samples using automated approaches. The reliable characterization of CSF alterations may help in the comprehensive characterization of brain structural abnormalities in psychiatric samples and in the development of etiopathogenic hypotheses relating to the disorders
    corecore