95 research outputs found

    Effects of Hormone Agonists on Sf9 Cells, Proliferation and Cell Cycle Arrest

    Get PDF
    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells

    The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants

    Get PDF
    Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. © 2014 Porcel et al

    Electrical transport in Bi doped n-type amorphous semiconductors (GeSe3.5)100-xBix at high pressure

    No full text
    Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips

    Pressure induced effects in bulk amorphous n-type semiconductors(GeSe3.5)100âxBix

    No full text
    The effect of pressure on the electrical resistivity of amorphous n-type (GeSe3.5)100�xBix been studied in a Bridgeman anvil system up to a pressure of 90 kbar down to liquid nitrogen temperature. A continuous amorphous semiconductor to metal-like solid transition in the undoped GeSe3.5 is observed at room temperature. Incorporation of Bi in the GeSe3.5 network is found to significantly disturb the behaviour of the resistivity with pressure. With increasing Bi concentration a much broader variation in resistivity with pressure is observed. The temperature dependence of the resistivity and activation energy at different pressures is also measured and they are found to be composition dependent. Results are discussed in the light of the Phillips Model of ordered clusters in chalcogenide semiconductors

    Pressure-induced first-order transition in layered crystalline semiconductor GeSe to a metallic phase

    No full text
    The electrical resistivity of layerd crystalline GeSe has been investigated up to a pressure of 100 kbar and down to liquid-nitrogen temperature by use of a Bridgman anvil device. A pressure-induced first-order phase transition has been observed in single-crystal GeSe near 6 GPa. The high-pressure phase is found to be quenchable and an x-ray diffraction study of the quenched material reveals that it has the face-centered-cubic structure. Resistivity measurements as a function of pressure and temperature suggest that the high-pressure phase is metallic

    On the structural features of doped amorphous chalcogenide semiconductors

    No full text
    A study of Bi-doped amorphous (Ge42S58)100−xBix and Ge20S80−xBix has been carried out by differential thermal analysis (DTA) and X-ray diffraction methods so as to elucidate the impurity-induced modifications in the semiconductors. Thermal analysis reveals the presence of complex structural units in the modified material. An interesting feature of this study is the existence of a double glass transition in Ge20S80−xBix, which is reported for the first time in this system

    Bismuth-doped amorphous-germanium sulfidesemiconductors

    No full text
    A study of the effect of bismuth dopant on the electronic transport properties of the amorphous semiconductors Ge20S80-xBix under high pressure (up to 140 kbar) has been carried out down to liquid-nitrogen temperature. The experiments reveal that the electronic conduction is strongly composition dependent and is thermally activated with a single activation energy at all pressures and for all compositions. A remarkable resemblance between the electronic conduction process, x-ray diffraction studies, and differential thermal analysis results is revealed. It is proposed that the n-type conduction in germanium chalcogenides doped with a large Bi concentration is due to the effect of Bi dopants on the positive correlation energy defects present in germanium chalcogenides. The impurity-induced chemical modification of the network creates a favorable environment for such an interaction

    Electrochemically Controllable Conjugation of Proteins on Surfaces

    No full text
    The rational design of surfaces for immobilization of proteins is essential to a variety of biological and medical applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. We have developed an advanced electrochemically based approach for site-selective and reaction-controlled immobilization of proteins on surfaces. When a molecular monolayer of 4-nitrothiophenol on gold electrode surfaces is reduced electrochemically in a selective fashion at its nitro groups, to afford amino groups by potentiometric scans, the amine can be employed to orchestrate the immobilization of proteins to the surface. This protein immobilization strategy could allow one to fabricate intricate protein structures on surfaces for addressing fundamental and applied problems in biology and medicine
    corecore