1,149 research outputs found
Cost-effectiveness of granulocyte colony-stimulating factor prophylaxis for febrile neutropenia in patients with non-Hodgkin's lymphoma in the United Kingdom (UK)
Introduction: We report a cost-effectiveness evaluation of granulocyte colony-stimulating factors (G-CSFs) for prevention of febrile neutropenia (FN) following chemotherapy for non-Hodgkin’s lymphoma (NHL) in the United Kingdom (UK).
Methods: A mathematical model was constructed simulating the experience of patients with NHL undergoing chemotherapy. Three strategies were modelled: primary prophylaxis (G-CSFs administered in all cycles); secondary prophylaxis (G-CSFs administered in all cycles following an FN event), and no G-CSF prophylaxis. Three G-CSFs were considered: filgrastim; lenograstim and pegfilgrastim. Costs were taken from UK databases and utility values from published sources with the base case analysis using list prices for G-CSFs and a willingness to pay (WTP) threshold of £20,000 per QALY gained. A systematic review provided data on G-CSF efficacy. Probabilistic sensitivity analyses examined the effects of uncertainty in model parameters.
Results: In the base-case analysis the most cost-effective strategy was primary prophylaxis with pegfilgrastim for a patient with baseline FN risk greater than 22%, secondary prophylaxis with pegfilgrastim for baseline FN risk 8-22%, and no G-CSFs for baseline FN risk less than 8%. Using a WTP threshold of £30,000, primary prophylaxis with pegfilgrastim was cost-effective for baseline FN risks greater than 16%. In all analyses, pegfilgrastim dominated filgrastim and lenograstim. Sensitivity analyses demonstrated that higher WTP threshold, younger age, or reduced G-CSF prices result in G-CSF prophylaxis being cost-effective at lower baseline FN risk levels.
Conclusions: Pegfilgrastim was the most cost-effective G-CSF. The most cost-effective strategy (primary or secondary prophylaxis) was dependent on underlying FN risk level, patient age, and G-CSF price
Cost-effectiveness of granulocyte colony-stimulating factor prophylaxis for febrile neutropenia in breast cancer in the United Kingdom
Introduction: We report a cost-effectiveness evaluation of granulocyte colony–stimulating factors (G-CSFs) for the prevention of febrile neutropenia (FN) after chemotherapy in the United Kingdom (UK).
Methods: A mathematical model was constructed simulating the experience of women with breast cancer undergoing chemotherapy. Three strategies were modelled: primary prophylaxis (G-CSFs administered in all cycles), secondary prophylaxis (G-CSFs administered in all cycles after an FN event), and no G-CSF prophylaxis. Three G-CSFs were considered: filgrastim, lenograstim, and pegfilgrastim. Costs were taken from UK databases and utility values from published sources. A systematic review provided data on G-CSF efficacy. Probabilistic sensitivity analyses examined the effects of uncertainty in model parameters.
Results: In the UK, base-case analysis with a willingness-to-pay (WTP) threshold of £20,000 per quality-adjusted life-year gained and using list prices, the most cost-effective strategy was primary prophylaxis with pegfilgrastim for a patient with baseline FN risk greater than 38%, secondary prophylaxis with pegfilgrastim for baseline FN risk 11% to 37%, and no G-CSFs for baseline FN risk less than 11%. Using a WTP threshold of £30,000 and list prices, primary prophylaxis with pegfilgrastim was cost-effective for baseline FN risks greater than 29%. In all analyses, pegfilgrastim dominated filgrastim and lenograstim. Sensitivity analyses demonstrated that higher WTP threshold, younger age, earlier stage at diagnosis, or reduced G-CSF prices result in G-CSF prophylaxis being cost-effective at lower baseline FN risk levels.
Conclusion: Pegfilgrastim was the most cost-effective G-CSF. The most cost-effective strategy (primary or secondary prophylaxis) was dependent on the FN risk level for an individual patient, patient age and stage at diagnosis, and G-CSF price
Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions
We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb[superscript 2+]) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb[superscript 2+] ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb[superscript 2+] ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb[superscript 2+] ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.SUTD-MIT International Design Center (Research Grant IDG11200105/IDD11200109)Singapore-MIT Allianc
Use of stochastic simulation to evaluate the reduction in methane emissions and improvement in reproductive efficiency from routine hormonal interventions in dairy herds
This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set
Species replacement dominates megabenthos beta diversity in a remote seamount setting
Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity
TLR2 and Nod2 Mediate Resistance or Susceptibility to Fatal Intracellular Ehrlichia Infection in Murine Models of Ehrlichiosis
Our murine models of human monocytic ehrlichiosis (HME) have shown that severe and fatal ehrlichiosis is due to generation of pathogenic T cell responses causing immunopathology and multi-organ failure. However, the early events in the liver, the main site of infection, are not well understood. In this study, we examined the liver transcriptome during the course of lethal and nonlethal infections caused by Ixodes ovatus Ehrlichia and Ehrlichia muris, respectively. On day 3 post-infection (p.i.), although most host genes were down regulated in the two groups of infected mice compared to naïve counterparts, lethal infection induced significantly higher expression of caspase 1, caspase 4, nucleotide binding oligomerization domain-containing proteins (Nod1), tumor necrosis factor-alpha, interleukin 10, and CCL7 compared to nonlethal infection. On day 7 p.i., lethal infection induced highly significant upregulation of type-1 interferon, several inflammatory cytokines and chemokines, which was associated with increased expression levels of Toll-like receptor-2 (TLR2), Nod2, MyD88, nuclear factor-kappa B (NF-kB), Caspase 4, NLRP1, NLRP12, Pycard, and IL-1β, suggesting enhanced TLR signals and inflammasomes activation. We next evaluated the participation of TLR2 and Nod2 in the host response during lethal Ehrlichia infection. Although lack of TLR2 impaired bacterial elimination and increased tissue necrosis, Nod2 deficiency attenuated pathology and enhanced bacterial clearance, which correlated with increased interferon-γ and interleukin-10 levels and a decreased frequency of pathogenic CD8+ T cells in response to lethal infection. Thus, these data indicate that Nod2, but not TLR2, contributes to susceptibility to severe Ehrlichia-induced shock. Together, our studies provide, for the first time, insight into the diversity of host factors and novel molecular pathogenic mechanisms that may contribute to severe HME. © 2013 Chattoraj et al
Improving pulse crops as a source of protein, starch and micronutrients
Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement
Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors
Introduction
The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. Methods
To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Results
Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Conclusions
Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.National Cancer Institute (U.S.). Integrative Cancer Biology Program (grant U54 CA112967)Virginia and D.K. Ludwig Fund for Cancer Researc
DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin
Excretion patterns of coccidian oocysts and nematode eggs during the reproductive season in Northern Bald Ibis (Geronticus eremita)
Individual reproductive success largely depends on the ability to optimize behaviour, immune function and the physiological stress response. We have investigated correlations between behaviour, faecal steroid metabolites, immune parameters, parasite excretion patterns and reproductive output in a critically endangered avian species, the Northern Bald Ibis (Geronticus eremita). In particular, we related haematocrit, heterophil/lymphocyte ratio, excreted immune-reactive corticosterone metabolites and social behaviour with parasite excretion and two individual fitness parameters, namely, number of eggs laid and number of fledglings. We found that the frequency of excretion of parasites’ oocysts and eggs tended to increase with ambient temperature. Paired individuals excreted significantly more samples containing nematode eggs than unpaired ones. The excretion of nematode eggs was also significantly more frequent in females than in males. Individuals with a high proportion of droppings containing coccidian oocysts were more often preened by their partners than individuals with lower excretion rates. We observed that the more eggs an individual incubated and the fewer offspring fledged, the higher the rates of excreted samples containing coccidian oocysts. Our results confirm that social behaviour, physiology and parasite burden are linked in a complex and context-dependent manner. They also contribute background information supporting future conservation programmes dealing with this critically endangered species
- …
