10 research outputs found
Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice
Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials
Gene expression signatures associated with the in vitro resistance to two tyrosine kinase inhibitors, nilotinib and imatinib
The use of selective inhibitors targeting Bcr-Abl kinase is now established as a standard protocol in the treatment of chronic myelogenous leukemia; however, the acquisition of drug resistance is a major obstacle limiting the treatment efficacy. To elucidate the molecular mechanism of drug resistance, we established K562 cell line models resistant to nilotinib and imatinib. Microarray-based transcriptome profiling of resistant cells revealed that nilotinib- and imatinib-resistant cells showed the upregulation of kinase-encoding genes (AURKC, FYN, SYK, BTK and YES1). Among them, the upregulation of AURKC and FYN was observed both in nilotinib- and imatinib-resistant cells irrespective of exposure doses, while SYK, BTK and YES1 showed dose-dependent upregulation of expression. Upregulation of EGF and JAG1 oncogenes as well as genes encoding ATP-dependent drug efflux pump proteins such as ABCB1 was also observed in the resistant cells, which may confer alternative survival benefits. Functional gene set analysis revealed that molecular categories of ‘ATPase activity', ‘cell adhesion' or ‘tyrosine kinase activity' were commonly activated in the resistant clones. Taken together, the transcriptome analysis of tyrosine kinase inhibitors (TKI)-resistant clones provides the insights into the mechanism of drug resistance, which can facilitate the development of an effective screening method as well as therapeutic intervention to deal with TKI resistance
Celecoxib enhances anticancer effect of cisplatin and induces anoikis in osteosarcoma via PI3K/Akt pathway
Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells
BACKGROUND: The human organic cation transporter-1 (OCT-1) is the primary active protein for imatinib uptake into target BCR-ABL-positive cells. Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used by chronic myeloid leukaemia (CML) patients on imatinib to manage musculoskeletal complaints. METHODS: Here we investigated the impact of NSAIDs on functional activity of the OCT-1 (OCT-1 activity; OA) in CML cells. RESULTS: Although ten of twelve NSAIDs tested had no significant impact on OA (P>0.05), we observed increased OA (27% increase in K562; 22% increase in KU812 cells, P<0.05) and reduced IC50(imatinib) when treated with diclofenac. Co-incubation with imatinib and diclofenac resulted in a significantly lower viable cell number compared with imatinib alone. In contrast, ibuprofen led to a significant decrease in OA, an increase in IC50(imatinib) and thus reduced the cytotoxicity of imatinib. In primary CML samples, diclofenac significantly increased OA, particularly in patients with low OA (<4 ng per 200 000 cells), and significantly decreased IC50(imatinib). Ibuprofen induced significant decreases in OA in CML samples and healthy donors. CONCLUSION: On the basis of the expected impact of these two drugs on OA, ibuprofen should be avoided in combination with imatinib. Further studies are warranted regarding the potential benefit of diclofenac to improve OA in a clinical setting.J. Wang, T.P. Hughes, C.H. Kok, V.A. Saunders, A. Frede, K. Groot-Obbink, M. Osborn, A.A. Somogyi, R.J. D’Andrea and D.L. Whit
